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Loss of a2-6 sialylation promotes the
transformation of synovial fibroblasts into a pro-
inflammatory phenotype in arthritis
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In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate
homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA).
Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions
between stromal and immune cells, but little is known about the role of the SF glycome in
joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glyco-
sylation pathways. Combining transcriptomic and glycomic analysis, we show that trans-
formation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a
process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gall and a2-6
sialylation. SF sialylation correlates with distinct functional subsets in murine experimental
arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines
remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-
inflammatory microenvironment. These results highlight the importance of glycosylation in
stromal immunology and joint inflammation.
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heumatoid arthritis (RA) is a chronic inflammatory con-

dition of the joints affecting 0.3-1% of the world’s

population. RA has been historically described as an
autoimmune condition, where the central component of disease
pathogenesis relies on aberrant responses of immune cells leading
to the destruction of bone and cartilage. Recent findings have now
shown that RA pathophysiology merges autoreactive immunity
with genetic, epigenetic, and environmental factors that are
responsible for disease initiation. RA starts with a pre-clinical
phase involving activation of immune mechanisms in the absence
of clinical symptoms!. Later, auto-amplificatory loops recruit
macrophages, T cells, and other immune cells to the joint. Local
inflammation is perpetuated through cytokine networks domi-
nated by TNF, IL-6, IL-1P, and chemokines such as Ccl2 or
CXCL5%3. Not surprisingly, biologic Disease-Modifying Anti-
Rheumatic Drugs (bDMARS) inhibiting these cytokines are the
treatments of choice in the clinic. Even though such gold standard
treatments can substantially improve the life quality of thousands
of patients!%, they can also induce serious adverse effects as a
consequence of their immunosuppressive nature. Moreover,
30-40% of RA patients do not respond to them completely,
suggesting that key events underpinning pathogenesis remain
elusive. In fact, the cellular and molecular basis of why inflam-
mation does not resolve in RA remains unanswered.

Synovial fibroblasts (SFs) are major components of the synovial
membrane, a highly specialized mesenchymal tissue lining the
joint cavity. In the synovium, two main microdomains can be
described: the lining layer (directly exposed to the synovial space)
and sub-lining layers. Due to their anatomical location, SFs
provide the required nutritional and structural joint support and
they were initially considered as cells lacking any substantial
impact on immune function. However, SFs adopt a key immu-
nopathological role in RA, responding to inflammatory cytokines
and promoting tissue damage>3>¢. Thus, despite being cells of
non-immune origin, SFs have a central role to perpetuate local
immune responses in the synovial joint, delivering region-specific
signals to infiltrating immune cells and contributing to bone and
cartilage degradation”-8. Interestingly, Single Cell Transcriptomics
have demonstrated that SFs comprise distinct functional subsets
that correlate with their anatomical location and activation of
pathological pathways*10, suggesting that SF-dependent immu-
nity may be far more complex than anticipated. Because of their
non-immune origin and their highly specialized function, inter-
ventions aiming at SFs—or specific SFs subsets—may modify
disease progression without significant immunosuppression,
although clinical targets have not yet been found.

Functional glycomics, an emerging discipline focused on
defining the structures and functional roles of carbohydrates
(glycans) in biological systems, could offer such fibroblast-specific
molecular targets!:12. Some elegant studies have shown the
potential impact of glycan regulation in multiple aspects of
RA pathophysiology. Reduced sialylation of N-glycans is a
feature of pathogenic immunoglobulins in RA patients and their
glycosylation profile shows predictive potential for disease
progression!3-17. Galectins, a family of proteins that bind to
galactose-containing glycans, are key modulators of synovial
inflammation!8-20. However, little is known about the glycosy-
lation profile of SFs, or whether or not this varies in health
and disease. Glycosylation modulates cellular interactions and
responses to immunomodulatory carbohydrate-binding proteins.
In fact, altered glycosylation is a hallmark of chronic inflamma-
tory conditions. In cancer, cytokines induce changes in the cell
glycome leading to local inflammation via control of cell adhe-
sion, migration, and signal transduction?!-23; mechanisms
that are also associated with the migration and pathogenicity of
SFs in RA. Furthermore, galectin-3 is upregulated in RA%4, and

galectin-3—/~ mice show reduced pathology in experimental
arthritis?). Moreover, exogenous galectin-3 significantly up-
regulates CCL2, CCL3, and CCLS5 in synovial but not in dermal
fibroblasts!®, suggesting that the synovial microenvironment can
induce tissue-specific glycosylation in the stromal compartment.

We hypothesized that the cytokine milieu in the inflamed joint
controls distinct SF-glycosylation, which in turn, regulates cell
recruitment and inflammatory responses. We investigate changes
in the SF glycome that could be related to their inflammatory
activity. By combining transcriptomic and glycomic analysis, we
report that the transformation of SFs into pro-inflammatory cells
in experimental arthritis is associated with glycan remodeling,
which involves the reduction of terminal sialylation in Thyl
(CD90)™ sub-lining SFs upon TNF stimulation. Notably, enzy-
matic removal of sialic acid is sufficient to induce inflammatory
pathways in the absence of further stimulation. We also show that
low sialylation of SFs is associated with disease remission in
human RA, supporting the idea that the stromal glycome
could be used for the development of disease biomarkers or
therapeutics.

Results

Anatomical location and inflammation shape fibroblast gly-
cosylation. First, we decided to test whether glycosylation could
be conditioned by local microenvironments. We expanded
fibroblasts from RA joint replacement surgery and matched
dermal fibroblasts, as a reflection of non-inflammatory environ-
ments. We also isolated SFs from osteoarthritis (OA), as an
example of a less inflammatory joint disease than RA. General
glycosylation was evaluated using lectin-binding assays by
immunofluorescence (Supplementary Fig. 1a) and flow cytometry
(Supplementary Fig. 1b, c). All fibroblasts bound most of the
tested lectins, confirming the presence of a rich and diverse gly-
cocalyx. Overall, human SF-glycome seemed to be rich in
galactose-containing glycans (RCAT, ECA™) containing Poly-
LacNAc extensions (LELT) and al-6 core-fucosylated N-glycans
(AALT), in contrast to the lack of al,2 fucosylation on glycan
antennae (UEA™). We also observed significant differences
between anatomical locations (dermal vs synovium: PNA, Jacalin
and ECA binding) and well as between distinct inflammatory
conditions (RA vs OA, LEL, and ECA binding) (Supplementary
Fig. 1), supporting the potential link between local inflammatory
mediators and glycan remodeling.

Next, we gathered further evidence using the available RNA-
Seq data set generated by Slowikowski et al.2%, where human SFs
were stimulated with TNF (1ng/ml) and IL-17 (10 ng/ml).
Glycosyltransferases and glycosidases are the enzymes synthesiz-
ing the cell glycome, and so we evaluated the relative expression
of these enzymes in Slowikowski’s data set. TNF significantly
modulated the biosynthetic pathways of branched glycans, like
GCNT2, along with the upregulation of a2-3-sialyltransferases
(§T3Gall, ST3Gal2, and ST3Gal4) (Supplementary Fig. 2a). This
suggested that TNF may directly modify SF-glycosylation. On the
other hand, no effect was observed in response to IL-17
(Supplementary Fig. 2b), indicating that changes in glycosylation
are linked to distinct cytokines. Nonetheless, results shown in
Supplementary Figs. 1 and 2a, b should be analyzed with caution.
Cells were isolated from patients undergoing joint replacement
surgery, that have been exposed to long-term immunomodulatory
treatments affecting the cytokine-glycosylation axis that we
intend to study. Thus, to further assess our hypothesis, naive
SFs were expanded from the synovium of healthy mice. Murine
SFs were stimulated with a panel of regulatory and pro-
inflammatory factors and subsequently stained with PHA, a
lectin that binds complex branched N-glycans. We used IL-22 as
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an example of a cytokine with both pro- and anti-inflammatory
activity in RA that specifically targets stromal cells2°. Corrobor-
ating the link between distinct glycosylation and effector
responses, the combination of inflammatory factors with IL-22
exerted diverse effects on the expression of branched glycans
(Supplementary Fig. 2c). Changes in PHA-binding in response to
immunomodulators might be reflective of SFs activation as
glycans recognized by PHA were detected in joint areas with a
strong SF-mediated inflammation (Supplementary Fig. 2d).

RNA-Seq identifies glycosylation pathways associated with SF
pathogenesis. Overall, our preliminary results in mouse and
human cells supported the hypothesis that immune mediators
found in local microenvironments control SF glycosylation. This
suggested that glycan expression and inflammation could be
intertwined events and we wanted to describe the mechanisms in
detail. However, SFs isolated from joint arthroplasty do not fully
represent disease pathophysiology, as cytokine-glycosylation
pathways could be significantly affected by long-term immuno-
suppressive treatments. Therefore, although these results cannot
provide conclusive mechanistic data, they offered the required
scientific support to utilize animal models, a system that is more
suitable to investigate basic physiological pathways. We chose the
murine model of Collagen-induced arthritis (CIA) because it
shares hallmarks of human disease of high relevance to this study,
such as the hyperplasia of the synovial membrane, inflammatory
infiltration of the synovium, and pannus formation. SFs from
healthy and CIA mice (Clinical scores >8) were sorted by flow
cytometry [CD45-CD31~Podoplanin™] (Fig. 1la) and RNA was
immediately purified for transcriptome sequencing (RNA-Seq)
analysis upon polyA selection. We recovered a greater number of
SEs from CIA joints compared to healthy joints, with elevated
expression of podoplanin (Fig. 1a), reflecting their hyperplasia
and activation reminiscent of human RA. Consistently, Principal
Component Analysis of the transcriptomic data confirmed the
distinction between both groups (Fig. 1b). A list of differentially
expressed (DE) genes in CIA SFs was generated including 298
upregulated genes and 88 downregulated [>2-fold, p.q;<0.01,
(Fig. 1b and Supplementary Fig. 3a)]. KEGG pathway enrichment
analysis showed that “Rheumatoid Arthritis” as a disease pathway
was significantly upregulated in CIA SFs (Supplementary Fig. 3b),
validating the model. String Protein-Protein Interaction Net-
works Functional Enrichment Analysis?” was applied to DE genes
in CIA compared to healthy SFs, identifying 2 main functional
networks: (i) cell cycle and cell division and (ii) inflammatory
response (Fig. 1c), further demonstrating SF immune activation
and hyperproliferation. Interestingly, GO-term analysis revealed
that most of the proteins identified in the inflammatory network
were glycoproteins and/or regulators of cell communication
(Fig. 1c), suggesting a potential role for glycosylation in SF
activation.

To fully dissect the transcriptomic profile of SFs glycosylation,
we evaluated the differential expression of genes involved in
different steps of glycosylation biosynthesis (glycosyltransferases
and glycosidases involved in mannosylation, glycan chain
branching and elongation, fucosylation, sialylation, and glycan
degradation, Fig. 1d). Unsupervised clustering based on these
glycan biosynthetic pathways separated naive and arthritic SFs in
all cases (Fig. le), indicating that pro-inflammatory SFs are
also defined by a characteristic glycosylation capability. The
observed downregulation of enzymes of medial Golgi-branching
N-acetylglucosaminyltransferases II, IV, and V (encoded by
Mgat2, Mgat4, and Mgat5) in CIA SFs, along with the
upregulation of B-1,4-Galactosyltransferase genes (B4galf) and
GCNT2 (Fig. 2e) suggested that these differences could modify

the extension and branching of antennae of N-glycans or
the number of poly N-acetyllactosamine (linear repeats of
GalP1,4GIcNAcP1,3) synthesized by P1,3N-acetylglucosaminyl-
transferases. Likewise, terminal modifications of such structures
may have reduced fucosylation or sialylation, given that
fucosyltransferases Futl0, Futll, and the sialyltransferases
St6gall, St3gal2, and St3gal6 are significantly downregulated in
CIA SFs (Fig. le).

Sialylation is reduced in pro-inflammatory SFs. Tran-
scriptomics proved to be a powerful tool to delineate potential
changes in cell glycosylation. However, unlike proteins or nucleic
acids, glycans are not assembled in a template-driven process.
Rather, glycosylation in the endoplasmic reticulum and Golgi is
the result of combined actions of glycosyltransferases and gly-
cosidases (Fig. 1d). Consequently, the prediction of structures
based on transcriptomic data does not necessarily correlate with
the final glycosylation profile, and further structural information
is needed to generate reliable glycan structural conclusions.
We used mass spectrometry (MS) based glycomics to define the
N-glycome of murine SFs (Supplementary Fig. 4). N-glycans were
isolated from cultured SFs, permethylated, and subjected to MS
analysis. Annotation of MS peaks with most likely glycan struc-
tures was based on molecular ion composition, knowledge of
biosynthetic pathways, and with the assistance of the bioinfor-
matic tool glycoworkbench?8. Most structures were annotated
as high-mannose glycans or complex glycans, either core-
fucosylated or non-fucosylated. Sequential addition of N-acet-
yllactosamines (LacNAcs) defined larger glycans, suggesting
the presence of extended antennae and multi-branched struc-
tures. Nevertheless, shorter bi-antennary glycans constituted the
most abundant type. Sialylation (including N-acetylneuraminic
[Neu5Ac] and N-glycolylneuraminic acid [Neu5Gc]) was
the most abundant capping modification, followed by
a-galactosylation (Gal-aGal). Neither Gal-aGal, nor Neu5Gc is
biosynthesized by humans. Because of the implications for
potential translational work, the N-glycome of human OA SFs
was defined as for the mouse cells (Supplementary Fig. 5). Like
the mouse glycome, human SFs express a glycome dominated by
high-mannose and short bi-antennary glycans. A full comparison
of the main structural groups in mouse and human was con-
ducted (Supplementary Fig. 6). The only significant difference
between mouse and human structures was found in the expres-
sion of complex N-glycans containing a greater number of
polyLacNAc groups in the human samples. This probably reflects
the lack of a-galactosylation, which would prevent the addition of
polyLacNAc groups. Nevertheless, these complex glycans repre-
sent <10% of both glycomes, indicating that human and mouse
SF N-glycomes are well conserved. Importantly, the total amount
of sialylated and fucosylated forms was comparable in both
species.

Next, to identify specific glycan changes that could contribute
to SF activation, the relative expression of individual N-glycans
structures in healthy and CIA SFs were compared. Structures
whose relative expression was lower than 0.02% of the total were
excluded since the low expressed forms could easily add
artefactual results. This data set containing 43 N-glycans were
subjected to unsupervised hierarchical clustering to uncover
expression patterns characteristic of inflammatory CIA SFs
(Fig. 2). Interestingly, N-glycans were clustered into 6 discrete
groups containing similar structural features: (i) cluster 1987:
high-mannose, (i) cluster 2285: LacNAc extended, (iii) cluster
3026: sialylated-fucosylated, (iv) cluster 3271: sialylated-LacNAc
(v) cluster 3258: sialylated-LacNAc-fucosylated, and (vi) cluster
2069: simple non-sialylated. Three of these clusters contained
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glycans that were significantly downregulated in CIA SFs: clusters
3026, 3271, and 3258, which had one characteristic in common: a
significantly high proportion of sialic acid-containing glycans. In
fact, 96% of all the sialylated glycans analyzed were found within
these three clusters, strongly suggesting that reduced sialylation is
associated with activated CIA SFs. The relative increase of related
non-sialylated cores (m/z 2244, 2069, 2110, and 2285) supports

4

Log10{norm. mean read count) in healthy

(<) Glycan degradation

@ sialylation

the loss of sialylation. We also determined the murine O-glycome
of healthy (Fig. 3a) and CIA SFs (Fig. 3b). O-glycans were isolated
by reductive elimination, permethylated, and subjected to MS.
SFs express core 1 and core 2 O-glycans, with limited LacNAc
extensions. We identified multiple sialylated structures, but
no fucosylation at all, in agreement with the N-glycome
description. Likewise, relative expression of sialylated O-glycans
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Fig. 1 Inflammatory synovial fibroblasts have a distinct transcriptomic profile of glycosylation pathways. Paws from healthy and arthritic mice were
dissected and soft tissue was digested. a Live synovial fibroblasts (Zombie Violet—, Podoplanint, CD45—, CD31~) were sorted by flow cytometry as shown
in dot plots. The number of isolated cells, PDPNT, and expression of PDPN are shown. Data are presented as mean + SEM. Naive n =5, arthritic n=4.
Statistical significance was calculated using a one-tail unpaired t-test, *p <0.05 and **p < 0.01. Actual p-values: a 0.0419, b 0.0055. b RNA was isolated
(RIN>9) from healthy (n=3) and arthritic CIA (n=3, scores of 9, 10, and 11) mice and subjected to bulk RNA-Seq (75 bp paired-end, 30 M reads).
Principal component analysis (PCA) and differential expression (DE) of genes are shown. All detected genes are plotted as a scatter plot where x = gene
expression healthy, y = gene expression arthritic. Genes that pass a threshold of p,q; < 0.01 and |log2foldChange| > 2 in DE analysis are colored in blue
when they are downregulated and red when they are upregulated in the arthritic (CIA) mice. Heatmap shows up and downregulated genes; [unsupervised
clustering in rows and columns based on Euclidean distances]. ¢ Function enrichment and network analysis regulated by synovial inflammation. STRING
protein-protein interaction network (https://string-db.org) was performed on DE genes from b. Significantly modulated pathways and cellular components
associated with DE genes in arthritic mice are shown in tables. [PPI enrichment p-value: < 1.0e—16]. K-means method gave two main functionally related
clusters of genes, designated as “cell proliferation” and “inflammatory” cluster. Color code for nodes is, red: cell cycle, purple: cytoskeleton, yellow:
glycoprotein, green: regulation of cell communication. d Analysis of glycogenes and glycan biosynthesis pathways. The illustration shows the N-glycan
synthesis pathway. Scatter blot: as in b but with genes annotated in the glycan biosynthesis pathways highlighted in green. e Heatmaps of scaled and

centered logyo transformed normalized read counts showing only differentially expressed genes involved in glycosylation pathways.

was reduced in CIA SFs (Fig. 3c), corroborating the lower
sialylation signature observed in N-glycans. Moreover, neither
N-glycans, nor O-glycans showed any difference in the relative
expression of Neu5Ac vs Neu5Gc.

SFs from arthritic mice exhibit a decrease in a2-6-linked sialic
acid. Comparative glycomic analysis indicated that experimental
arthritis was strongly associated with a downregulation in sialic-
acid-containing glycans in SFs (Figs. 2 and 3). A retrospective
examination of the transcriptomic data reveals a significant
downregulation of St3gal6, St3gal2, and St6gall [fold-increase
0.73, 0.64, and 0.60 respectively] (Fig. le), supporting the reduced
presence of sialylated glycans observed by MS (Figs. 2 and 3).
However, it also showed a significant upregulation of St3gal4
mRNA [1.49 fold-increase (Fig. 1e)]. These apparently conflicting
results could be explained by the differential regulation of sialic
acid linkages that would not be detected in our MS-based studies.
Two glycosidic bonds could be found in SFs: sialic acid-a2-3Gal
and sialic acid-a2-6Gal, synthesized by six ST3 beta-galactoside
alpha-2,3-sialyltransferases (ST3Gall-6) and two ST6 beta-
galactoside alpha-2,6-sialyltransferases (ST6Gall-2), respectively.
We used SNA and MAALIL, lectins that specifically recognize sialic
acid in a2-6 and a2-3-linkages. SNA binding was reduced in CIA
SEs compared to naive SFs, whereas MAAII binding was not
affected (Fig. 4a). These results indicate that the differential sia-
lylation profile observed in CIA SFs is due to a specific reduction
in a2-6-sialylation, presumably because of lower ST6-
sialyltransferases expression. Furthermore, binding of galactose-
recognizing lectins such as PNA and SBA was upregulated in
arthritic SFs (Fig. 4a), probably reflecting increased terminal
galactose in the under-sialylated glycome. Since inflammation
does not change a2-3-sialylation of SFs, a reduced ratio of a2,6/
a2,3-linked sialic acid might constitute a hallmark of inflamma-
tory SFs. Supporting these findings, synovial membranes of
healthy mouse joints had an a2-6 > a2-3-sialylation profile, as
observed by immunofluorescence with SNA and MAAII, whilst
inflamed joints in CIA mice show comparable levels of both sialic
acid linkages (Fig. 4b).

TNF down-regulates St6gall expression and a2-6-sialylation.
Transcriptomics, MS-based glycomics, and lectin-binding experi-
ments concluded that reduced a2-6-sialylation is associated with
inflammatory SFs. Next, we sought to identify the molecular
mechanisms causing this shift. Several sialyltransferases (Sia-Ts)
were expressed in SFs (Fig. 5a), including ST3Gal enzymes
[St3gall >> St3gal2 > St3gal4 > St3gal3] and only one involved in
a2-6-Sialylation, St6gall. Enzymes involved in polysialic synthesis

(ST8Sia-Ts) were only marginally expressed, in agreement with
MS glycomics data (Supplementary Fig. 4). We also evaluated the
expression of enzymes involved in CMP-Neu5Ac synthesis (Cmas,
Gne, Nanp, Nans, Slc35al, Fig. 5a). CMP-NeuAc is the cytosolic
donor for sialic acid, and a decrease in its intracellular levels could
also lead to hyposialylated glycomes, regardless of Sia-T's activity.
However, these enzymes were highly expressed in both healthy
and CIA SFs (Fig. 5a), suggesting that intracellular availability of
sialic acid might not restrain the biosynthesis of sialosides.
However, and rather unexpectedly, neither RNA-Seq analysis nor
qPCR approaches detected expression of N-Acetylneuraminic
Acid Phosphatase (Nanp), an enzyme that dephosphorylates sialic
acid 9-phosphate to free sialic acid. Perhaps alternative bio-
synthesis pathways operate in SFs, as in recent observations in
CHO cells?®. Cmah, an enzyme that converts CMP-Neu5Ac to
CMP-Neu5Gc in murine cells, and Casdl and Sige, genes that
potentially modulate acetylation of sialic acid, were also detected,
although expression was similar between healthy and CIA SFs.

To identify the mechanisms modulating sialylation, we used
qPCR to evaluate the expression of selected genes (as in Fig. 5a) in
response to IL-1P, IL-17, and TNF, key pro-inflammatory
cytokines in RA. Confirming cell activation, all cytokines
upregulated II6 mRNA upon cytokine stimulation (Fig. 5b). No
significant effect was seen in response to IL-17, in line with
observations in Supplementary Fig. 2b. No difference was
observed in Gne, Nans, Cmas, or SLC35A1 expression, corrobor-
ating that sialic acid biosynthesis is not the cause for the reduced
sialylation observed in CIA. IL-1p increased expression of St6gall
(in naive SFs) and St3gal4 (in CIA SFs), with an approximately
2-fold-increase. However, these changes were only mild com-
pared with the significant downregulation (8-fold) of St6gall in
response to TNF in both naive and CIA SFs (Fig. 5b). St6gal2 was
not detected in mouse fibroblasts, suggesting that the TNEF-
ST6Gall link has a key role in the reduction of a2-6-sialylation
during CIA. In consonance with additional qPCR results, SNA-
binding was reduced only by TNF stimulation, but not by IL1f or
IL-17 (Fig. 5¢). TNF also downregulated ST6GGAL!I mRNA in
human SFs isolated from OA patients (Fig. 5d). Unlike the case of
murine SFs, we observed the expression of ST6GAL2 in human
cells, although its expression was lower than that observed for
ST6GALI. TNF also downregulated ST6GAL2 mRNA (Fig. 5d),
corroborating the role of this cytokine in fibroblast desialylation
in the human system. Finally, N-glycans from murine cells
were isolated after TNF stimulation to conduct MS-based
glycomic analysis. 12 out of 16 sialylated N-glycans showed a
reduced expression (Fig. 5e), providing additional support to our
findings.
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Synovial fibroblast subsets are differentially sialylated. The
discovery of individual subsets of SFs has revolutionized our
understanding of fibroblast biology in RA. Single-cell tran-
scriptomic experiments have shown that fibroblast subsets localize
to specific regions in the synovium contributing to different aspects

of disease pathogenesis”!?. For example, CD90*FAPa*fibroblasts
located in the synovial sub-lining are essential for the perpetuation
of the inflammatory response, whereas CD90~FAPa™ in the
lining membrane is responsible for bone and cartilage damage®.
Thereby, understanding which functional SF subset(s) lose sialic
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Fig. 2 Synovial fibroblasts from arthritic mice have a reduction in sialylated N-glycans. N-glycans from synovial fibroblasts expanded from healthy or
arthritic synovial fibroblasts were isolated and permethylated prior to MALDI-TOF MS analysis. 43 structures were selected (relative expression >0.02%)
and MS peak area was quantified and normalized against total measured intensities. Unsupervised hierarchical clustering with Euclidean distance grouped
structures into six main clusters. Structures present in each cluster are shown. Blue and red dots represent SFs isolated from healthy and CIA mice
respectively. Data show the results from 4 independent experiments, where healthy and arthritic fibroblasts samples were processed in parallel. Before-
after graphs show all structures present in the indicated clusters, where individual dots are the mean of relative expression from 4 experiments and similar
structures in healthy and CIA cells are connected with lines. Statistical significance between healthy and CIA was assessed by one-tail paired t-test, *p <
0.05 and **p < 0.01. Actual p-values: a 0.0046, b 0.0371, ¢ 0.024. Relative expression for each glycan structure (shown with their m/z value) is also shown
in scatter plots showing mean and SEM, where each dot represents the relative expression of one independent experiment, n=4, *p <0.05 and **p <0.01
using unpaired one-tail t-test. Actual p-values: d 0.0153, e 0.0385, f 0.0372, g 0.0478, h 0.0005, i 0.0420.
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Fig. 3 MALDI-TOF MS profiles of the permethylated O-linked glycans derived from murine SFs. a, b Synovial fibroblasts were expanded from healthy or
arthritic mouse synovium. O-glycans were isolated by reductive elimination and permethylated prior to MALDI-TOF MS analysis. The analysis was
performed on merged SFs from a naive (n=3) and b CIA (n=3) mice. Blue boxes show the structures constituting 75% of all the glycome and red
boxes show those completing 90% of total expression. ¢ Heatmap showing the relative expression of each annotated form. Structures showing a
differential expression (£30%) in the CIA mouse are shown.
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Fig. 4 Synovial fibroblasts from arthritic mice have reduced levels of ®2-6 but not a2-3-sialylation. a SNA, MAAII, PNA, and SBA lectins were
used in enzyme-linked lectin assay (ELLA) to evaluate the presence of a2-6 Sialic acid, ®2-3 sialic acid, non-sialylated T antigen, and terminal
N-acetylgalactosamine/galactose respectively. n =10 biological replicates from three independent experiments. Statistics: two-tail unpaired t-test, n =10.
*p<0.05, **p<0.01, ***p<0.001. Actual p-values: a 0.0007, b <0.00001, ¢ 0.0018. Boxplots show 25th to 75th percentiles and median, whiskers from
minimum to maximum. b Mouse joint sections were stained with biotinylated SNA and MAAII and fluorescently labeled streptavidin. Magnification x20,
scale bars: 400 pm. Lectin binding is shown in red, nuclei counterstain with DAPI in blue. Superimposed white elements indicate as follows; [dotted lines]:
bone limits, [arrows]: synovial membrane, [asterisks]: local inflammation and infiltrating cells. The experiment was repeated twice with similar results.

acid during inflammation would establish the functional relevance
of sialylation in SF-mediated pathogenesis. SNA and MAAII lectins
were used to detect a2-6 and a2-3 sialic acid in CD90™" (sub-lining)
and CD90~ (lining) SFs directly isolated from digested mouse
synovium. PNA was used as a control, as sialic acid prevents its
binding. SFs from healthy joints showed a higher affinity for SNA
than MAAII, supporting the homeostatic role of o2-6-sialylation.
Interestingly, naive unstimulated CD90" SFs had a higher basal a2-
6-sialylation in comparison to CD90~ SFs (Fig. 6a), perhaps sug-
gesting that sialic acid content is related to functional and geo-
graphical SF specialization. Next, we FACS-sorted CD90" and
CD90~ SFs from naive and CIA joints to evaluate St6gall, 116, and
Mmp3 mRNA levels (Fig. 6b). Corroborating our results, ST6Gall
was found to be downregulated in CIA SFs, but only in CD90" SFs.
This agrees with recent reports showing that CD90" sub-lining SFs
are the main drivers of disease in RA synovial immune
responses> %30, As expected, Mmp3 and 16 were upregulated
during arthritis and preferentially expressed by CD90- SFs, con-
sistent with findings from Croft et al.”. In addition to St6gall, SFs
subsets also showed differential Mmp3 and Il6 expression (Fig. 6b),
connecting function, geographical location, and glycosylation
signature.

a2-6-sialylation is associated with disease remission stages.
Given the downregulation of a2-6-sialosides in SFs during CIA,
we postulated that a low sialylated SF-glycome would be a
characteristic signature of strong inflammatory environments,
especially those with high TNF concentration. To test this
hypothesis, we compared the N-glycome of SFs expanded from
CIA animals, separating them into cells from non-affected paws
(low scores, LS-SFs) and very inflamed paws (high scores, HS-

SFs), taking advantage of the CIA model being asymmetrical. In
addition, we included SFs from naive non-arthritic mice. Unsu-
pervised clustering of N-glycan relative expression (assessed by
MS) revealed one overexpressed cluster in LS-SFs (cluster 3619,
Fig. 7a) containing 84% of sialylated structures. By contrast,
cluster 2080 was under-represented and it included almost
exclusively non-sialylated glycans (Fig. 7a). Because a2-6-linked
sialic acid is a blocker for galectin binding3:32, low sialylated
glycomes could be more sensitive to interactions with galectins,
due to a higher exposure of terminal galactosides. This could be
the case for LS SFs. To test this, naive, LS- and HS-SFs (as in
Fig. 7a) were stimulated with recombinant galectin-3, described
as a pro-inflammatory factor in RA33, IL-17 and TNF were used
as inflammatory mediators that do not bind glycans. In all cases,
IL-6 production confirmed SF activation. Indeed, all SF groups
showed some ability to respond to IL-17 and TNF, being their
response in direct correlation to their inflammatory status
(Fig. 7b, c). However, LS-SFs did not respond to galectin-3, in
clear contrast to HS-SFs (Fig. 7c) which were easily activated.
This could be explained by the protective coating of sialic acid in
the LS-SFs-glycome compared to that of the HS-SFs, preventing
galectin-3 binding and consequent inflammatory response. There
could also be differences in N-glycan branching amongst groups,
which may affect galectin-3 binding. Nevertheless, LS-SFs still
expressed more IL-6 than naive SFs, both in resting and stimu-
lated cells. Thus, we cannot rule out that highly sialylated LS-SFs
are in a pre-clinical phase transitioning towards more inflam-
matory conditions, rather than in an anti-inflammatory or
remission stage.

Hence, to assess whether high content of sialic acid is a
protective marker, we used SFs expanded from either untreated
early RA patients (<12 months from joint symptoms beginning),
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or RA patients in sustained remission under c-DMARDs+TNF-
inhibitor combination therapy (Fig. 8). These samples were
obtained from US-guided minimally invasive synovial tissue
biopsies, which limited the amount of biological material and
impacted the detection of low abundant species in the MS-based
glycomic studies. Therefore, these cell lines are derived from all

CIA

0
1981 2390 2431 2461 2605 2635 2792 2809 2839 2852 2880 2966 3026 3503 3533 3707

I +TNF [ Non-stimulated

the synovial fibroblasts populations in the tissue. We could still
detect the most abundant structures, including high-mannose and
sialylated, and non-sialylated bi-antennary N-glycans. Results
showed that RA patients in sustained remission had a higher ratio
of sialylated/non-sialylated N-glycans, differences that were not
seen when other types of structures were compared, such as

NATURE COMMUNICATIONS | (2021)12:2343 | https://doi.org/10.1038/s41467-021-22365-z | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Fig. 5 TNF inhibits St6gal1 expression to down-regulate a2-6-sialylation in synovial fibroblasts. a Illustration shows pathways involved in sialic acid and
sialylated glycans biosynthesis. Relative expression for each gene was extracted from bulk RNA-Seq data comparing naive and arthritic SFs directly isolated
from mouse synovium. b Synovial fibroblasts expanded from healthy or arthritic mouse joints were stimulated in vitro for 6 h with recombinant IL-13, TNF,
or IL-17A [10 ng/ml]. mRNA expression for genes involved in sialylation [as shown in a] was evaluated by RT-gPCR. /l6 was included as a positive control
to confirm cell activation. Volcano plots show log2 fold difference in stimulated cells (x axis) and p-value (y axis). Each dot represents the mean of three
independent experiments analyzed in triplicate, with naive cells in blue and arthritic cells in red. The pink line indicates a twofold-change in gene expression
threshold and blue lines indicate p = 0.05 threshold in the t-test to evaluate statistical significance. € TNF, but not IL-18 or IL-17A reduces a2-6-sialylation
of synovial fibroblasts both at RNA (St6gall expression) and protein (SNA binding) levels. Expression of Stégall (left panel) was evaluated by RT-qPCR.
Results show the mean of three independent experiments analyzed in triplicate, error bars represent SEM. Statistical significance was determined using
two-tail unpaired t-tests where *p <0.05 and **p < 0.01. Actual p-values: a 0.0069, b 0.0277. Expression of a2-6 sialylated glycoconjugates was
determined by SNA binding (right panel) as in Fig. 4a. Results are merged from 3 (naive) and 2 (CIA) independent experiments, n =10 (DMEM naive),
16 (IL-1 naive and IL-17 naive), 13 (TNF naive), 10 (DMEM CIA), 12 (IL-1 naive and IL-17 naive), and 9 (TNF CIA). Statistical significance was determined
using two-tail unpaired t-tests, where **p < 0.01 and ***p < 0.001. Actual p-values: ¢ 0.0124, d 0.0091. d SFs were expanded from OA human synovium.
Cells were stimulated with recombinant human TNF (10 ng/ml) for 6 h. IL6, ST6GALI, and ST6GAL2 expression were determined by gPCR. Results
show relative expression to HPRT, showing mean + SEM. Statistics: one-tail unpaired t-test, n = 3 biological replicates from cells pooled from three donors,
***p < 0.001, *p <0.05. Actual p-values: e <0.0001, f 0.0170, g 0.0321. e Relative expression of individual sialylated glycan structures was evaluated by
MALDI-TOF MS analysis as in Fig. 3. Ratios of sialylated vs non-sialylated twin structures were evaluated for non-stimulated cells (blue) and TNF
stimulated (red) cells (48 h, 10 ng/ml). Results are from one single experiment using pooled cells from three animals.
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Fig. 6 Reduced a2-6-sialylation is restricted to CD90 synovial fibroblasts. a Synovial fibroblasts from healthy mice were isolated from mouse joints and
identified by flow cytometry as in Fig. 1 (Zombie Violet—, CD45~, CD31-, Podoplanin®), separated into CD90* and CD90~ populations and stained with
the biotinylated lectins SNA, MAAII, and PNA, and streptavidin-PE-Cy7. Graphs show the mean fluorescence intensity for each lectin. Data are presented
as mean + SEM, dots represent cells from one individual mouse (n = 3). One-tail unpaired t-test was used for statistics, **p < 0.01, #p < 0.05. Actual
p-values: a 0.0264, b 0.023. b Synovial fibroblasts from healthy and arthritic mice (n=4) were isolated from mouse joints as in a and RNA was purified
using the RNeasy Mini Kit (Qiagen) according to manufacturer's instructions. Expression of /16, Mmp3, and St6gall mRNA was quantified by RT-qPCR. Data
are presented as mean * SEM. One-tail unpaired t-test was used for statistics, **p < 0.01, #p < 0.05 compared to the same population in control healthy
mice. Actual p-values: ¢ 0.0118, d 0.0428, e 0.0103, f 0.0225, g 0.0183.

fucosylated versus non-fucosylated or different mannose- biologic DMARDs) RA synovium, supporting our conclusion of

containing glycans. This suggests that high sialic acid content is
a distinctive feature of SF-glycome in RA patients in sustained
remission (Fig. 8a). In line with this, SNA binding revealed a
higher expression of a2-6 sialic acid in the synovium of RA
patients in remission after c-DMARDs + TNF-inhibitor treat-
ment (Fig. 8b) compared with OA and naive (not exposed to

sialylation being an anti-inflammatory factor not only in the
mouse model but also in human RA. However, further studies are
necessary to determine the effect of SF sialylation in human RA.
Given the disease heterogeneity, different disease stages and
patient groups must be considered to extract clinically relevant
conclusions.
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Exogenous hydrolysis of sialic acid triggers inflammation in
SFs. Prior to clinical studies, it was important to establish whether
desialylation plays a leading role in SF activation, or on the
contrary, it is a more indirect consequence of ongoing inflam-
mation. If a2-6-sialylation was a molecular switch for controlling
inflammatory/resting stages, its removal would trigger pathogenic
pathways in naive cells. We conducted experiments to modulate
cell sialylation to test this hypothesis. a2-6-sialylation was blocked
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by St6gall mRNA silencing, validated by qPCR and SNA binding
(Fig. 9a). We observed that siRNA treatment also upregulated I/6
mRNA (Fig. 9a). The effect of St6gall silencing on cytokine
secretion was confirmed by ELISA, as cells produced significantly
higher amounts of IL-6 and Ccl2 (Fig. 9b). Increased MMP3
release was also detected, albeit this did not achieve statistical
significance (Fig. 9b). Additionally, we used recombinant Clos-
tridium perfringens sialidase (CP) to remove surface sialic acid
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Fig. 7 Synovial fibroblasts isolated from inflamed and non-inflamed joints have distinct sialylation signatures. Synovial fibroblasts were isolated from
healthy mice (naive) and from CIA arthritic mice, where joints were separated into non-inflamed (low scores, LS) and very inflamed (high scores, HS) prior
to cell isolation and expansion. a N-glycans were isolated and permethylated for to MALDI-TOF MS analysis and relative glycan expression was quantified
as in Fig. 3. Two clusters were identified as distinctive of severe inflammation, for which glycan structures are shown. Percentage of sialylated and non-
sialylated glycans are represented. Cell lines from a were stimulated with TNF (b) and IL-17 () [10 ng/ml, 12 h]. Supernatants were collected and IL-6
levels were quantified by ELISA. Each dot represents an independent experiment analyzed in triplicate. Data are presented as mean = SEM, n=3 (IL-17),
and n =4 (TNF) independent experiments. Statistical significance was evaluated by ordinary one-way ANOVA and Tukey's test for multiple comparations.
***p < 0.001, **p < 0.01, *p < 0.05. Actual p-values: a <0.0001, b <0.0001, c 0.0265, d 0.0008. #p < 0.05 compared with naive non-treated, actual p-values:
e 0.003, f 0.00028, g 0.0393, h 0.0158. d Cell lines were stimulated with galectin-3 [1ng/ml, 12 h] and IL-6 was measured in culture supernatants by
ELISA. Data are presented as mean £ SEM, n = 6 independent experiments. One-tail unpaired t-test was used for statistics, *p < 0.05. Actual p-values: i

0.0476, j 0.0243.

from naive SFs. CP hydrolyzed sialic acid in only 30 min, con-
firmed by the reduced ability of treated cells to bind SNA and
MAA, but not AAL (fucose specific) (Fig. 9¢c). CP reduced SNA
binding to 52.6% (£9.1, n = 6 experiments) and MAA binding to
64.9% (£23, n = 6 experiments) and it had an immediate effect on
SF phenotype. CP-treated SFs significantly upregulated II6 mRNA
(4 fold) and Ccl2 mRNA (8-fold) after only 3 h, with no difference
in Mmp3 mRNA expression (Fig. 9d). These results corroborate
the siRNA experiments (Fig. 9a, b), indicating that a drop of sialic
acid in SFs is sufficient to induce II6 and Ccl2 in otherwise resting
cells.

Discussion
Glycans are involved in fundamental biological processes asso-
ciated with SF-mediated pathophysiology, such as cell adhesion
and migration, cell signaling, and communication or immune
modulation. There are examples of proteins recognizing glycans
to initiate SF-dependent inflammatory responses, such as galec-
tin-3, a positive regulator of TLR-induced responses in human
SFs34. Although galectin-3 stimulates IL-6, CXCL8 and MMP3
production in both dermal and synovial fibroblasts, it promotes a
significantly higher secretion of TNF, CCL2, CCL3, and CCL5 in
SFs!9, reflecting distinct stromal glycosylation and immunity of
the synovial space. However, little attention has been given to the
SFs glycome, the code read by galectins, and all carbohydrate-
binding proteins. Yang et al. in 2004 published one of the first
studies connecting SF glycosylation and cytokine activity, show-
ing specific glycan remodeling associated with TNF and TGFp
stimulation3>. However, the structural information generated was
very limited due to the nature of the lectin-based assays
employed. More recent studies have focused on specific glyco-
syltransferases expressed in SFs, like fucosyltransferase 1 (Futl)
and galactosyltransferase-I (f1,4-GalT-I). Futl is involved in
terminal al-2 fucosylation and is upregulated in RA synovial
tissue3® regulating leukocyte-SF adhesion, whilst p1,4-GalT-I is
induced by TNF* to promote binding to the glycosylated
extracellular matrix. Aberrant glycosylation of fibronectin has
also been reported in RA38. Nonetheless, the exact composition of
the SF-glycome was unknown, limiting the progression of func-
tional glycomics studies in joint inflammation. Therefore, we
aimed to conduct a broader systematic study to bridge the gap
between glycomics and other omics approaches in the field of SF-
dependent immunology. Our results provide an extensive
description of the SF glycome in models of health and disease that
will help to understand the interactions of SFs with other immune
cells and matrix components in the joint tissue in human disease.
The success of glycosciences in the field of cancer is an
exemplar model that integrates glycomics into stromal immu-
nology. Distinct modifications in tumors have been characterized
including truncated N- and O-glycans, increased N-glycan
branching, and changes in sialylation. Ultimately, these changes
affect fundamental cell processes like cell adhesion, signaling,

tumor progression, and metastasis?®>, making glycans attractive
targets for therapeutic intervention. Recent technological advan-
ces and the prospective use of glycan-based biomarkers for
patient stratification have led it to be estimated that the global
glycobiology market size will grow 14.7% in the coming years,
with an estimated market value of USD 822.5 million in 2018. In
RA, SFs undergo important epigenetic changes to adopt a tumor-
like invasive phenotype that is also likely to be determined by
glycosylation. This may include hyperproliferation, secretion of
MMPs responsible for tissue damage and migration, and perpe-
tuation of local pro-inflammatory responses. Thus, perhaps new
therapeutic opportunities in RA can be opened by mirroring
recent advances in cancer, especially for patients that are refrac-
tory to current immunosuppressive drugs. A better under-
standing of SF-glycobiology will aid the development of such
glycan-based therapeutics.

We combined transcriptomic and MS-based glycomic analysis
to define changes in SF-glycome with unprecedented detail in
synovial inflammation. N-glycome from healthy SFs comprises
LacNAc-containing structures with high levels of core fucosyla-
tion and terminal sialylation. However, inflammation renders the
sub-lining CD90" SF population hyposialylated, specifically in
a2,6-linkage. Differences between the lining and sub-lining sia-
lylation could be explained by distinct expression and regulation
of TNF receptors and associated signaling molecules. Our data
include all CD90" populations, but further differences can be
expected in sub-lining fibroblasts subsets. Hyposialylated SF-
glycome would increase the accessibility of LacNAc repeats,
allowing galectin-3 binding to SF surface glycoconjugates. In fact,
sialylation can act as a “switch off” for galectin-3 function. For
example, ST6Gall up-regulates a2-6-sialylation to block binding
of galectin-3 to B1 integrin, inhibiting cell apoptosis®®. Sialylation
also inhibits galectin-3 binding to squamous epithelia and tumor
cells*0-42, Thus, because of a desialylated glycome, galectin-3
could induce secretion of inflammatory mediators such as IL-6 or
Ccl2 in SFs, increasing local concentrations of TNF that would
further reduce ST6Gal-1 and a2-6-sialylation, establishing an
autocrine pro-inflammatory loop that could explain the perpe-
tuation of disease in a similar fashion shown by members of the
IL-6 family*3. By contrast, healthy synovium shows higher levels
of a2-6-Sialylation in SFs, perhaps masking LacNAc repeats and
preventing inflammatory actions of galectins. Likewise, the
spontaneous upregulation of Il6 and Ccl2 when sialic acid is
directly removed from the SF surface could be a consequence of
galectin signaling in an autocrine fashion. Additionally, other
glycan modifications may play a role, such as a glycan branching.
Based on the collective evidence provided here, we propose that
sialylation might be a homeostatic mechanism that is lost during
RA progression because of TNF overexposure.

To understand the physiological role of sialic acid in SFs, the
role of additional carbohydrate-binding proteins (CBPs) will
require consideration. CBPs are expressed either in SFs, or in
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Fig. 8 Levels of sialylation correlate with disease stages and pathotypes of human RA. a Synovial fibroblasts were expanded from human biopsies from
n=2 naive RA patients (not exposed to any disease-modifying anti-rheumatic drug) and n=3 RA patients in sustained clinical and imaging remission
achieved with c-DMARDs+TNF-inhibitor combination therapy. N-glycans were isolated and subjected to MALDI-TOF MS analysis. Relative intensity was
used to calculate the ratio of expression of the indicated paired glycans. Glycan structures are designated by their m/z value. b Synovium from OA, and
naive and remission RA patients were stained with biotinylated SNA and Alexa-647-conjugated streptavidin (magenta). DAPI (cyan) was used to stain cell
nuclei. Images were acquired with a confocal microscope LSM 880. Results are from one single experiment, OA n =1, active RA = 2, remission RA n=2.
Each image represents one individual patient. Scale bars: 200 pm.
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other immune cells, promoting trans or cis interactions. Siglecs
(sialic acid-binding immunoglobulin-type lectins) are a family of
immune regulatory proteins primarily found on hematopoietic
cells. Consistent with our proposed homeostatic role for sialic
acid in the synovium, Siglec-9 protected mice against experi-
mental arthritis, although authors reported that it had no effect
on SFs*4. Instead, Siglec-9 inhibited NF-kB activation in human

14

RA macrophages. However, effects on SFs cannot be ruled out, as
following cytokine stimulation during disease, RASFs may already
have a reduced sialylation profile which would make them
unresponsive to Siglec-mediated actions. It is, therefore, possible
that siglecs mediate regulatory effects in synovial self-tolerance
under healthy conditions, or at very early disease stages. The
mechanism could involve Siglec-sialic acid trans interactions
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Fig. 9 Synovial fibroblasts desialylation triggers inflammatory cytokine production. a Murine SFs isolated from healthy mice were treated with either
siRNA for St6gall or Allstars RNA control for 3 days. The reduction of a2-6-sialic acid was evaluated by SNA binding by immunofluorescence and flow
cytometry. Expression of Stégall mRNA and //6 mRNA was determined by gPCR. b SFs were treated with St6gall siRNA or Allstars RNA for 3 days. Cell
culture medium was then replaced and cells were incubated for 12 h at 37 °C. Cytokine concentration was determined by ELISA and data were normalized
with the number of cells in each well, calculated by crystal violet staining. Each dot represents one experiment analyzed in technical triplicates. Statistical
significance was evaluated by ordinary one-way ANOVA and Tukey's test for multiple comparations, *p < 0.05, **p < 0.01. Actual p-values: a 0.0474,

b 0.025, ¢ 0.100. ¢ murine SFs were incubated with 100 mU/ml of recombinant Clostridium perfringens (CP) sialidase for 30 min at 37 °C. Cells were
then washed and fixed. Relative lectin binding (SNA, MAA, and AAL) was then calculated by ELLA assay. Data are from one representative experiment
performed in five biological replicates. The experiment was repeated four times with similar results. ***p < 0.001 analyzed by one-tail t-test. Actual
p-values: d 0.0003, e <0.0001. d Synovial fibroblasts were treated with 100 mU/ml of recombinant Clostridium perfringens (CP) sialidase as before and
incubated for 3 h at 37 °C. RNA was then isolated to quantify relative expression levels of /16, Ccl2, and Mmp3 by gPCR. Data represent fold change
expression compared to non-treated controls. Each dot represents one independent experiment analyzed in triplicate, data are presented as mean £ SEM
for n="5 experiments for /6 and Ccl2 and n = 4 experiments for Mmp3. A two-tail paired t-test using relative expression was used to calculate statistical

significance. *p <0.05, **p < 0.01. Actual p-values: f 0.0034, g 0.0265.

between SF and immune cells. In line with this, B cells
lacking Siglec-2 (CD22) and Siglec-G develop spontaneous
autoimmunity#>, and Siglec-G—/~ lupus-prone MRL/Ipr mice
exhibit increased severity and early onset of arthritis*®. Besides,
most siglecs (2,3,5,6-11) show inhibitory effects on TLR-
dependent activation and mediate immunosuppression in the
tumor microenvironment because of local hypersialylationt’. By
contrast, Siglec-1 (sialoadhesin) shows pro-inflammatory actions,
it is upregulated in activated macrophages in RA“8 and suppresses
Tregs*. Interestingly, the anti-inflammatory Siglec-2 has a pre-
dilection for a2-6 sialic acid, but the pro-inflammatory Siglec-1
binds preferentially to a2-3°0, in turn supporting our conclusion
that pro-inflammatory SFs diminish a2-6-sialylation but not a2-
3. Thus, homeostatic a2-6 >>> a2-3-sialylation on SFs could
induce Siglec-2-mediated signals to prevent B cell activation,
whereas inflammatory a2-6 < a2-3-sialylation would support SFs
interactions with pathogenic macrophages via Siglec-1, cells that
also secrete high levels of pro-inflammatory galectin-3 and TNF,
perpetuating disease. Although this is an oversimplification of a
complex scenario, it provides a good example of how the axis
cytokines-sialylation-siglecs/galectins could regulate interactions
between immune cells and SFs. Moreover, other sialic acid-
binding proteins could be relevant, like selectins. Selectins are
expressed in lymphoid, myeloid, and endothelial cells, and mice
deficient in Selectin-P and selectin-E show an enhanced arthritis
progression®1>2, Conversely, ficolins, innate immune receptors
recognizing sialic acid too, show opposite effects, as ficolin B
deficient mice are protected against arthritis”>>4. These glycan-
dependent networks could explain the SF-mediated pathology
and their interactions with immune cells in the arthritic syno-
vium. Further work should be directed to determine the expres-
sion of sialic acid-binding proteins in different cell types in the
synovium to complement the findings presented in this work.
Pathogenic networks will be further defined by the inclusion of
additional immune cells in the equation, but also by the SFs
anatomical and functional heterogeneity that has been recently
revealed!%30. Sub-lining CD90* SFs are the main contributors to
inflammatory responses in RA, observation validated in animal
models®. Our results in the mouse model indicate that only sub-
lining CD90" SFs reduce St6gall expression, compared to the
lining CD90~ SFs suggesting that sialic acid would have distinct
roles on individual SFs subsets. These sialoside-dependent inter-
actions could explain the observed disease tissue heterogeneity
described in RA patients, including lymphoid, myeloid, and
fibrotic phenotypes>>°°. Because synovial phenotypes observed in
RA have been associated with distinct pathways (myeloid-IL-1B/
TNF, lymphoid-IL-17°°), it would be relevant to study
ST6Gall expression in RA phenotypes. Interestingly, TNF indu-
ces a similar shift of a-2,6/a-2,3-sialylation in chondrocytes

downregulating ST6Gall®’, in agreement with the pro-
inflammatory role of a2,3-sialylation in synovial joints.

In conclusion, in the present report, we revealed that the
reduction of a2,6-sialylation constitutes a signature of the
inflammatory status of synovial fibroblasts. This altered pheno-
type seems to be induced by TNF, in contrast with IL-1 or IL-17
that had no effect. This might open a possibility to segregate
disease phenotypes by their glycosylation profile. Future studies
clarifying the functional consequences of shifting sialylation
patterns in SFs are now required, especially in the clinical context,
as well as expressions of sialic acid receptors in other cells, like B
cells or monocytes. The vast, and yet unexploited amount of
information contained in the SF glycome could offer novel
therapeutic targets, and further work is anticipated before this
goal can be achieved. Nevertheless, this study sets the foundations
for future clinic intervention of glycan-dependent pathological
networks in human RA, and other autoimmune diseases where
stromal fibroblasts control local inflammation.

Methods

Patient recruitment and isolation of human fibroblasts lines. Tissue samples
were collected from patients who fulfilled the 2010 EULAR/American College of
Rheumatology classification criteria for RA%S. Tissue samples were also acquired
from patients with radiographically confirmed OA. Synovium samples and over-
lying skin were obtained from the knee joint of each patient at the time of joint
replacement surgery. This study was reviewed and approved by the South Bir-
mingham Local Ethics Committee (LREC 5735), all patients gave written informed
consent. Tissue samples were minced into 1 mm?3 section under sterile conditions,
washed, and then resuspended in 10 ml 5mM EDTA in phosphate-buffered saline
(PBS) and incubated for 2 h at 4 °C with vigorous shaking. The resulting cell-tissue
mixture was washed 3 times in RPMI medium and then cultured in complete
RPMI 10% FCS until adherent fibroblast colonies became confluent. Non-adherent
cells and tissue fragments were discarded once adherent cells had appeared.
Fibroblasts were expanded until reaching confluence and then reseeded into tissue
culture flasks of twice the surface area after trypsin treatment. All experiments
using expanded fibroblast lines used cells between passages 3 and 4. For active
naive RA patients and patients in sustained clinical and ultrasound remission®?,
biopsies were collected at the Division of Rheumatology of the Fondazione Poli-
clinico Universitario A. Gemelli IRCCS - Universita Cattolica del Sacro Cuore
(namely SYNGem cohort) through ultrasound guidance using a standard operating
procedure with a sampling of at least 6-8 different tissue pieces®®Sl. Patient
demographics are included in Supplementary Table 2.

Immunofluorescence analysis. Overall, 10,000 cells were grown in chamber
slides, wash three times with PBS, and fixed with 4% PFA for 20 min at room
temperature. Cells were permeabilized with PBS 0.5% Triton and rinsed with PBS-
Tween 20. Endogenous biotin was blocked with the Streptavidin/Biotin blocking kit
according to the manufacturer’s instructions (Vector Laboratories, SP-2002).
Carbo-Free Blocking Solution (Vector laboratories, SP-5040) was used as a
blocking solution. Samples were incubated overnight with biotinylated lectins at
2 ug/ml in PBS purchased from Vector laboratories [Concanavalin A (ConA), B-
1005; Ricinus Communis Agglutinin I (RCA), B-1085; Peanut Agglutinin (PNA),
B-1075; Jacaline, B-1155; Wheat Germ Agglutinin (WGA), B-1025; Sambucus
Nigra Lectin (SNA), B-1305; Lycopersicon Esculentum Lectin (LEL), B-1175;
Erythrina Cristagalli Lectin (ECA), B-1145; Aleuria Aurantia Lectin (AAL), B-1395;
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Ulex Europaeus Agglutinin I (UEA), B-1065]. Lectins were finally detected with
FITC-conjugated streptavidin (Biolegend, 405201). Mouse joint sections (7 pm)
and human synovium sections were deparaffinized in xylene and dehydrated in
ethanol, and antigen was retrieved by incubation at 60 °C for 40 min in sodium
citrate buffer (10 mM Sodium Citrate, 0.05% Tween 20, pH 6.0). Blocking was
performed as explained before. Samples were stained with biotinylated Phaseolus
Vulgaris Leucoagglutinin (PHA-L) from Vector laboratories, catalog number B-
1115, and Alexa-555-conjugated streptavidin (ThermoFisher, S$21381). Vimentin
was detected with anti-vimentin goat IgG (Sigma, V4630, diluted 1:400) and Alexa-
647-conjugated anti-goat IgG (ThermoFisher, A21245, diluted 1:1000). All samples
were counterstained with DAPI. Images were obtained using an LSM 510 META
confocal laser coupled to an Axiovert 200 microscope (Zeiss) and analyzed with
Zeiss LSM Image Browser software 4.0.

Flow cytometry. Cultured cells were detached from the plates using Accutase cell
detachment solution (Stemcell Technologies) according to the manufacturer’s
instructions. For lectin staining (listed before), cells were blocked with Carbo-Free
Blocking Solution (Vector laboratories, SP-5040) and stained with biotinylated
lectins and FITC-conjugated streptavidin in PBS for 20 min at 4 °C. Data were
acquired using a BD LSRII flow cytometer and analyzed with FlowJo software 8.7.3.

Mice and CIA model. CIA was induced in 8-10-week-old male DBA/1 mice
(Envigo) on day 0 by intradermal immunization with bovine type II collagen (MD
Biosciences) in Freund’s complete adjuvant (CFA). On day 21, mice received 100
mg of collagen in PBS intraperitoneally. Disease scores were measured every 24 h
on a scale from 0 to 4 for each paw. Animals reaching an overall score of 10 or
more were immediately euthanized. Animals were maintained in the University of
Glasgow Biological Services Units in accordance with the Home Office UK Licenses
P8C60C865, 1675F0C46, and ID5SD5F18C, and the Ethics Review Board of the
University of Glasgow. Mice were maintained under 12 h light/dark cycles and
standard temperature (20-25 °C) and humidity (40-50%).

Isolation of synovial fibroblasts from mice and explant cell culture. For mouse
synovial tissue digestion, skin and soft tissues were removed from mouse limbs,
and bones with intact joints were dissected and transferred into DMEM (+5%
FCS) containing 1% r-Glutamine, 1% Penicillin Streptavidin, nystatin, and 1 mg/ml
type IV collagenase (Sigma) and 5 mg/ml DNase I. Samples were incubated in the
shaking oven at 37 °C for 1:20 h, when EDTA was added, final concentration 0.5
mM for 5min at 37 °C. Samples were vortexed to release cells. Cells were cen-
trifuged and washed with DMEM 10% FCS twice. For cell expansion, cells were
plated and expanded until adherent fibroblast colonies became confluent. Non-
adherent cells and tissue fragments were discarded once adherent cells had
appeared, usually after 48 h. Fibroblasts were expanded until reaching confluence
and then reseeded into tissue culture flasks after trypsin treatment. Expanded
synovial fibroblasts were used at passage 3 or 4 only, when culture purity was
assessed by flow cytometry and expression of CD106 (Biolegend, catalog number
105722), CD54 (Biolegend, catalog number 116107), and CD90 (Biolegend, catalog
number 105316). Expression of CD11b was also evaluated (Invitrogen, catalog
number 11-0112-85), where cells were <1% positive. All antibodies were used at
1:100 dilution.

Mouse synovial fibroblast sorting. Single-cell suspensions from mouse synovium
were obtained as described before. Cells were stained at 4 °C with Zombie Violet
staining (BioLegend, catalog number 423113) to exclude dead cells. Antibodies
used were anti-CD45 (Biolegend, catalog number 103106), anti-CD90 (Biolegend,
catalog number 103106), anti-podoplanin (Biolegend, catalog number 105316),
anti-CD31 (Invitrogen, catalog number 12-0311-81). Cell sorting was performed
immediately after staining using a FACS Aria Ilu machine. For sorted populations,
purity was determined by reanalysis for the target population based on cell surface
markers immediately post sorting. Purity was >99% for the synovial fibroblasts
target population (CD31~, CD45~, podoplanin™). All antibodies were used at
1:100 dilution.

RNA-sequencing and data analysis. Total RNA from sorted synovial fibroblasts
was isolated immediately post sorting using RNeasy Micro kit (Qiagen, Germany).
RNA integrity was checked with the Agilent 2100 Bioanalyzer System. All purified
RNA had a RIN value >9. Libraries were prepared using the TruSeq mRNA
stranded library preparation method. Samples were sequenced 2 x 75 bp to an
average of more than 30 million reads. The data discussed in this publication have
been deposited in NCBI’s Gene Expression Omnibus®? and are accessible through
GEO Series accession number GSE162306. All RNA-seq reads were then aligned to
the mouse reference genome (GRCM38) using Hisat2 version 2.1.0. Featurecounts
version 1.4.6 was used to quantify reads counts. Data quality control, non-
expressed gene filtering, median ratio normalization (MRN) implemented in
DESeq2 package, and identification of differentially expressed (DE) genes was done
using the R Bioconductor project DEbrowser®3. Genes that passed a threshold of
Padj < 0.01 and log2foldChange > 2 in DE analysis were considered for further
analysis. Gene Ontology (GO) enrichment, KEGG pathway enrichment, and

UniProt Keywords enrichment were performed in String version 11.0 (https://
string-db.org) based on statistically significant DE genes.

Mass spectrometric analysis of glycans. Synovial fibroblasts cells were scraped
off tissue culture plates and suspended in iced-cold ultrapure water before
homogenization and sonication were performed. Cells protein extract was pre-
cipitated in a methanol/chloroform extraction, Cell extracts were reduced and
carboxymethylated, using Dithiothreitol and Iodoacetic acid, and then treated with
trypsin. The treated samples were purified using Oasis HLB cartridges (Waters)
prior to the release of N-glycans by PNGase F (recombinant from Escherichia coli,
Roche) digestion and O-glycans were by reductive elimination. Released glycans
were permethylated and then purified using a Sep-Pak C18 cartridge (Waters) prior
to MS analysis. The resulting enzyme-treated samples were lyophilized and per-
methylated prior to MS analysis. Purified permethylated glycans were dissolved in
10 pl methanol and 1 pl of the sample was mixed with 1 pl of matrix, 20 mg/ml 2,5-
dihydroxybenzoic acid (DHB) in 70% (v/v) aqueous methanol and loaded on to a
metal target plate. 4800 MALDI-TOF/TOF mass spectrometer (AB SCIEX) was
run in the reflectron positive ion mode to acquire data. MS spectra were annotated
manually with the assistance of the glycobioinformatics tool GlycoWorkBench
(GWB) version 1.1. All N-glycans were assumed to have a Manal-6(Manal-3)
Manp1-4GIcNAcB1-4GlcNAc core structure based on knowledge of the N-glycan
biosynthetic pathway in mammalian cells and PNGase F specificity. The compo-
sition of the glycans derived from MALDI-TOF MS in positive ion mode was
manually interpreted. Relative expression of individual glycan structures was
evaluated by calculating areas under the curve of annotated peaks using GWB®* 1.
For comparative studies, MS peak areas were quantified and normalized against
total measured intensities. Unsupervised hierarchical clustering with Euclidean
distance was performed on the relative glycan expression samples using the
heatmap.2 function of the gplots package in R. The symbolic nomenclature for
glycan structures used in all the spectra annotations is the same as the one used by
the Consortium for Functional Glycomics (CFG) [http://www.functionalglycomics.
org/static/consortium/Nomenclature.shtml. Hexoses: circles, N-Acetylhex-
osamines: squares. Galactose stereochemistry: yellow, Glucose stereochemistry:
blue, Mannose stereochemistry: green. Fucose: red. Acidic sugars: diamonds,
NeuAc (purple), and NeuGc (light blue)].

Enzyme-linked lectin assays and ELISA. Synovial fibroblasts at 10,000 cells/well
were grown on 96-well plates. Cells were washed three times with cold PBS. Cells
were then fixed with 4% paraformaldehyde for 20 min. Fixed cells were washed
three times with PBS containing 0.05% Tween. CarboFree solution (Vector
Laboratories) was used to block non-specific interactions, following incubation
with 1 pg/ml of biotinylated lectin (Vector Laboratories, Burlingame), for 30 min.
Cells were washed with PBS and incubated with HRP conjugated streptavidin for
20 min and washed again with PBS-Tween. A reaction was induced in the cells with
a developing solution, consisting of 1 mg/ml p-nitrophenyl phosphate in 0.5 mmol/
1. The reaction was allowed to proceed in the dark and plates were read at 405 nm
using a microplate spectrophotometer. Interleukin-6 (IL-6) expression was mea-
sured by ELISA in SF-supernatants according to the manufacturer’s instructions
(BD Biosciences, Oxford, UK).

qRT-PCR. Cells were lysed in RLT lysis buffer prior to mRNA extraction using
RNeasy Plus Mini kit (Qiagen, Germany) according to the manufacturer’s
instructions. The High Capacity cDNA Reverse Transcriptase kit (Applied Bio-
systems, Life Technology, UK) was used to generate cDNA for use with StepOne
PlusTM real-time PCR system (Applied Biosystems, UK) and predesigned KiCq-
Start® qPCR Ready Mix (Sigma-Aldrich) or TaqMan gene expression assays
(Applied Biosystems). Predesigned KiCqStartTM primers (Sigma-Aldrich) were
purchased to evaluate murine f3-Actin, Cmas, Gne, Nanp, Nans, Slc35al, St3gal2,
St3gal3, St3gald, St3gal5, St3gal6, St8sial, St8sia2, St8sia3, St8sia4, St8sia5, St8siab,
Stégalnac2, St6galnacd, St6galnac2, St6galnacd, St6galnac5 and Stégalnacé.
Sequences can be found in Supplementary Table 1. TagMan predesigned probes
(ThermoFisher Scientific) were used to evaluate mouse Actb (4352933E), 1l6
(Mm00446190_m1), St6gall(Mn00486119_m1), St6gal2(Mm01268915_m1),
St3gall(MmO00501493_m1), Stégalnacl(Mm01252949_m1), Stégalnac3
(Mm01316813_m1) and Mmp3(Mm00440295_m1) and human IL6
(Hs00174131_m1), STEGALI (Hs00949382_m1), ST6GAL2(Hs00383641) and
HPRT(4333768T). Data were normalized to the reference gene p-actin in mouse
cells and HPRT in human samples to obtain the ACT values that were used to
calculate the fold change from the AACT values following normalization to a
biological control group.

Desialylation of synovial fibroblasts in vitro. For short interfering RNA trans-
fection, St6gall siRNA (Qiagen, catalog # SI01434699) or Allstar negative control
siRNA (Qiagen, catalog # SI03650318) were diluted in 8% HiPerFect Transfection
Reagent (Qiagen, catalog # 301705) in Dulbecco’s Modified Eagle Medium (Invi-
trogen, catalog # 21969035) and incubated 10 min at room temperature to form

transfection complex before adding to cells. The final concentration of siRNA for
all targets was 10 nM. Cells were then incubated under growth conditions for 24 h
before refreshing medium. Follow-up experiments were carried out three days after
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the initial transfection. For hydrolytic cleavage of sialic acid, synovial fibroblasts
were cultured until 80% confluence. Cells were washed with DMEM and incubated
for 30 min at 37 °C with 100 mU/ml of recombinant Clostridium perfringens sia-
lidase (Sigma-Aldrich) in PBS:RPMI 1640 (1:1) pH = 6.8. Cells were then washed
with 10% FCS DMEM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Transcriptomic data, including raw sequencing data and processed read counts for each
sample, have been deposited in NCBI's Gene Expression Omnibus under the accession
code GSE162306. Human data shown in Supplementary Fig. 2 were obtained and
analyzed from the publicly available data set from https://immunogenomics.io/fibrotime.
Raw RNA-Seq data was accessed through GEO accession code GSE129488. All other data
are available in the article and Supplementary files or from the corresponding authors
upon reasonable request. Source data are provided with this paper.
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