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Broad misappropriation of developmental
splicing profile by cancer in multiple organs

Arashdeep Singh 1 , Arati Rajeevan1,3, Vishaka Gopalan1,3, Piyush Agrawal1,
Chi-Ping Day 2 & Sridhar Hannenhalli 1

Oncogenesis mimics key aspects of embryonic development. However, the
underlying mechanisms are incompletely understood. Here, we demonstrate
that the splicing events specifically active during human organogenesis, are
broadly reactivated in the organ-specific tumor. Such events are associated
with key oncogenic processes and predict proliferation rates in cancer cell
lines as well as patient survival. Such events preferentially target nitrosylation
and transmembrane-region domains, whose coordinated splicing in multiple
genes respectively affect intracellular transport and N-linked glycosylation.
We infer critical splicing factors potentially regulating embryonic splicing
events and show that such factors are potential oncogenic drivers and are
upregulated specifically in malignant cells. Multiple complementary analyses
point to MYC and FOXM1 as potential transcriptional regulators of critical
splicing factors in brain and liver. Our study provides a comprehensive
demonstration of a splicing-mediated link between development and cancer,
and suggest anti-cancer targets including splicing events, and their upstream
splicing and transcriptional regulators.

Cancer onset and progression results in the dedifferentiation and
gradual loss of lineage-specific phenotypes and echoesmultiple facets
of early embryonic development including rapid proliferation,
epithelial-mesenchymal transition (EMT), cellular migration, and
angiogenesis. The mechanistic details of these cancer-associated
changes in cellular function and physiology, termed as ‘hallmarks of
cancer’1, are not completely understood. Past studies have shown that
a core set of transcription factors (TFs) and signaling pathways, which
maintain pluripotency in embryonic stem cells (ESCs) and orchestrate
normal embryonic development, are reactivated in cancer and thus
underlie physiological reversal in cancer progression2–5. For instance,
the core pluripotency markers OCT3/4 and SOX2, are important bio-
markers of several cancers6–8. Likewise, the Myc module of ESCs gets
reactivated in mouse models of mixed-lineage leukemias and is a
predictor of patient outcome inmany human cancers5. Consistentwith
these anecdotes, a universal signature of stemness accurately predicts
the tumor infiltration by leukocytes and response to immunotherapy9.

In addition to TFs, various signaling pathways involved in
embryonic development, such as Wnt, Notch, and Hippo, also get
reactivated in cancer and their associated genes accumulate onco-
genic mutations3,10,11.

In addition to gene expression, alternative splicing (AS), wherein
multiple isoforms of the same gene are expressed, affects >95% of the
multi-exonic genes in humans12,13 and underlies diverse biological
processes such as stemness, differentiation, development, and
ageing14–17. A plethora of gene-centric studies have demonstrated the
critical role that AS plays in cancer18. For instance, long and short
isoforms of Bcl-x protein have anti-apoptotic and pro-apoptotic roles
respectively19,20. Several members of the receptor tyrosine kinase
family express multiple isoforms enhancing the proliferative or
metastatic ability of cancer cells. For example, the FGFR2 isoform,
FGFR2III-b, is mainly expressed in epithelial cells while FGFR2III-c is
expressed inmesenchymal cells21. This isoform switching is involved in
epithelial-mesenchymal transition (EMT)22 and is linked to invasiveness
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and metastasis of colorectal23,24 and breast cancers25. Likewise, alter-
natively spliced isoforms of genes such as P63, Cyclin D1, CD44, HRAS,
RAC1, and PKM can modulate proliferative, apoptotic, metabolic, and
invasive properties of cancer cells18,26,27. Recent comparative tran-
scriptomic analyses acrossmultiple organs showed the prevalence and
cross-species conservation of alternative splicing events during
development28. Despite the established importance of AS in develop-
ment and cancer, as well as broad phenomenological links between
development and cancer, an unbiased and comprehensive investiga-
tionof the links betweendevelopment and cancerAS events in a tissue-
specific fashion is still lacking and can have major implications on our
broader mechanistic understanding of oncogenesis and cancer
therapies.

In this work, leveraging the human developmental transcriptome
across multiple time points in three organs29 as well as the tran-
scriptomicdata of the corresponding cancer fromTheCancerGenome
Atlas (TCGA) (https://www.cancer.gov/tcga), we chart the landscape of
embryonic splicing events that are reactivated in the organ-specific
cancer, and investigate their upstream regulators and downstream
functional implications. Focusing on the most common type of AS
event type, namely, exon skip events, we show that embryonic AS
events associate with key oncogenic processes such as rapid pro-
liferation, migration, and angiogenesis, and are significantly reacti-
vated in tumors. The reactivation of embryonic AS events predicts the
patient’s survival and is associated with the proliferation rate in cancer
cell lines. Among ‘embryonic positive’ (EP) and ‘embryonic negative’
(EN) exons, the nitrosylation domain (ND), transmembrane-region
domain (TRD), andWD40domain are significantly enriched in all three
tissues. Detailed molecular and functional analysis reveals that NDs
and TRDs respectively affect retrograde cellular transport by coordi-
nately regulating the activity of Arf and Ras family GTPases and
N-linked glycosylation by regulating the transmembrane localization
of oligosaccharyl transferase subunits. We further train a splicing
regulatorymodel based on the developmental gene expression data of
splicing factors which accurately predicts the inclusion of embryonic
AS events in cancer patients and identifies critical splicing factors
(CSFs) potentially regulating embryonic AS events. The identifiedCSFs
are upregulated in cancer, often accompanied by copy number
amplifications. Leveraging tumor single cell RNA-seq data, we show
that the CSFs are specifically activated in themalignant epithelial cells,
further supporting their role in malignancy. Based on multiple com-
plementary approaches, we identify key transcription factors (TFs)
predicted to regulate the identified CSFs, includingMYC and FOXM1 in
the brain and liver, respectively, and can be targeted using known FDA-
approved drugs. Overall, our work establishes, through multi-modal
data integration, reversal to developmental AS in cancer, and suggests
therapeutic avenues directly targeting the regulators of such a
reversal.

Results
Identification of exons associated with human fetal
development
To identify the AS events associated with fetal development, we
implemented a two-step approach where we first identified
fetal development associated pathways, and then obtained the AS
events correlated with those pathways (Fig. 1a); the rationale and
advantages of this approach are discussed in the Methods section and
Supplementary Note 1. Based on organ-specific transcriptomic data
across multiple stages (Supplementary Data 1) of pre- and post-natal
development29, we first estimated the activity for each of the 332 KEGG
pathways30, quantified as themedian expression of the pathway genes,
in each sample, independently in brain, liver and kidney tissues. Prin-
cipal component analysis (PCA) of the pathway activity clearly sepa-
rates the pre- andpost-natal stages along the first principal component
(Supplementary Fig. 1a). Clustering of pathways in the PCA space

(“Methods”) revealed two mutually exclusive sets of pre- or post-natal
pathways which were correspondingly assigned as ‘embryonic posi-
tive’ or ‘embryonic negative’ (Fig. 1b).

As expected, genes constituting embryonic positive pathways are
enriched in several gene ontology (GO) terms related to the processes
which are crucial for embryonic development such as EMT, extra-
cellular matrix (ECM) remodeling, cellular proliferation, and angio-
genesis, providing additional validationof our approachused todetect
embryonic pathways (Fig. 1c, Supplementary Data 2). Next, we used
PEGASAS31 to identify alternative exons whose sample-specific inclu-
sion is significantly correlated with the activity of embryonic positive
pathways across developmental timepoints (“Methods”). We defined
an exon as embryonic positive (EP) or embryonic negative (EN) based
on the fraction of embryonic positive pathways whose activities are
respectively significantly positively or negatively correlated with the
exon’s inclusion level (Fig. 1d, e, “Methods”). We thus identified on
average ~2000 EP as well as EN exon skip events in each tissue (Sup-
plementary Data 3); as expected, EP and EN exons exhibit opposite
inclusion patterns in the pre- and postnatal stages (Fig. 1e, and Sup-
plementary Fig. 1b).

We found that the EP and the EN exon inclusion levels are broadly
uncorrelated with the expression of their host genes, suggesting that
these AS events vary independent of their host gene’s expression
(Fig. 1d, Supplementary Fig. 1c). This independence is further sup-
ported by our observation that ~20-30% of the host genes of EP/EN
exons in fact contain both EP and EN events (Supplementary Fig. 1d).
Moreover, in almost all cases (>99%) when an exon’s inclusion corre-
lates with an embryonic positive pathway, the exon’s host gene is not
member of that pathway. Collectively, these data suggest that AS
provides an additional regulatory layer to gene expression programs
for controlling developmental pathways.

The host genes of EP and EN exons are significantly enriched in
tissue specific processes in the case of brain and liver (Supplementary
Fig. 1e, Supplementary Data 4). For example, GO terms for neuronal
activities, such as synapse organization, dendrite development, neu-
ron death, cell polarity, regulation of neurotransmitters, are enriched
in the host genes of EP/EN exons specifically in brain. Likewise, liver EP/
EN exons are involved in the regulation of many key metabolic pro-
cesses as well as regulation of cell junctions and cytokinesis. EP/EN
exons in all three tissues are enriched for autophagy, consistent with
the emerging role of AS in the regulation of autophagy32. Overall, we
identify numerous exons that, independent of the expression of their
host gene, are preferentially utilized during fetal development and
repressed postnatally, and strongly associate with key developmental
and oncogenic processes.

Embryonic AS events are recapitulated in cancer and are asso-
ciated with cancer stage and patient survival
We next assessed the extent to which the organ-specific EP events are
recapitulated in the corresponding cancer types. First, we found that in
all three organs the genome-wide profile of the AS events clearly dis-
tinguishes tumor samples from their non-malignant counterparts in
TCGA (Supplementary Fig. 2a), as observed previously31,33. Next, we
identified the cancer-associated AS events in each organ by comparing
the splicing profiles in tumors with healthy GTEx counterparts
(“Methods”, Fig. 1a) and assessed their overlap with organ-specific EP
and EN events. In all three organs we found that the EP events are
significantly enriched among the AS events frequently increased in
cancer, while the EN events are enriched among the AS events fre-
quently decreased in cancer (Fig. 2a). These enrichment values corre-
spond to the reactivation of almost 50% of the embryonic events in
brain, 20% in kidney and 15% in liver, implying that several hundred (in
liver and kidney) to thousands (in brain) of alternative splicing events
in cancers revert back to their embryonic counterparts (Supplemen-
tary Fig. 2b, c). The observed enrichment may simply be because EP
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events have lower inclusion level in healthy postnatal tissues as shown
in Fig. 1e and are therefore more likely to increase in cancer (analo-
gously EN events might be more likely to decrease). We ruled out this
potential confounder by randomly sampling alternatively spliced
exons with low (psi < 0.3) and high (psi > 0.7) inclusion level in healthy
GTEx samples of liver and testing their enrichment among the events
frequently increased and decreased in liver cancer, respectively
(nominal false positive rate <0.01; Supplementary Fig. 2d; Methods).
Additionally, removing the exons with ~0 inclusion in healthy GTEx
tissues did not affect the enrichment of EP events among the cancer-
specific events (Supplementary Fig. 2e). Further, the ΔPSI values for
between pre- and post-natal stages were strongly correlated with the
ΔPSI values between TCGA and GTEx, in brain and liver, hinting at the
broad and global similarity in the pattens of alternative splicing during
embryonic development and cancer (Supplementary Fig. 2f). Using an
alternative approach to quantify cancer-specific events or filtering EP
events based on stringent ΔPSI criteria (prenatal – postnatal > 0.2) did
not affect the significance of embryonic splicing in cancer (Supple-
mentary Fig. 2g and Supplementary note 1). We observe an even
greater enrichment of EP and EN events in advanced tumors compared
with early-stage tumors (“Methods”; Supplementary Fig. 2h, I), linking

embryonic splicing to not only oncogenesis but also to cancer pro-
gression. Furthermore, in all three organs, the EP (respectively EN)
inclusion levels across samples are positively (respectively, negatively)
correlated with cancer hallmark signature gene set scores (Fig. 2b),
indicating a possible direct link between oncogenic processes and
embryonic splicing. Unlike other signatures, apoptosis and DNA
damage gene sets, whose activity is known to inversely correlate with
tumor aggressiveness1, are negatively correlated with EP events.

Next, we directly assessedwhether the EP and EN inclusion level is
associated with patient survival using Cox regression (“Methods”). In
all three tissues, EP inclusion had significantly higher (and positive)
hazard ratios and EN inclusion had respectively lower (and negative)
hazard ratios compared to the rest of the exons (Fig. 2c); we ensured
that the observed trends were not confounded by the expression level
of the host genes (Supplementary Fig. 2j).

Since early embryonic development shares several molecular
programs across organs29, we derived a set of EP events (197 events)
common to all three organs and assessed its association with survival
across 20 cancer types (Fig. 2D). We further hypothesized that the
shared set of EP events were more likely to result in worse prognosis
acrossmultiple cancer types, and found that indeed, a greater fraction
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Fig. 1 | Detection of AS events relevant to development of organs. aOverview of
the pipeline for the identification and comparison of developmental and cancer-
associated splicing events. b Hierarchical clustering of KEGG pathways in brain
cerebellum. Each colored cell in the heatmap corresponding to a pathway p and a
developmental time point t represents the cosine similarity between p’s contribu-
tion (loading) to thefirst 5 PCs and t’s PC score for thefirst 5 PCs, thus indicating the
activity of pathway p at timepoint t (“Methods”). c Dot plot for the GO term
enrichment of the genes comprising embryonic pathways inferred in (b). Dots are
colored based on FDR-corrected one-sided p-value from Fisher’s test (labelled as q-
value) as implemented in clusterProfiler package in R and sized based on the
number of genes in each functional category. d Circular heatmap showing the
number of positively and negatively correlated embryonic pathways with each
exon. Each leaf in the dendrogram is an exon. Outer two rows represent respec-
tively the number (per legend colors) of positively and negatively correlated

embryonic pathways with the exon. The innermost layer shows the Pearson’s cor-
relation coefficient of the PSI value of each exon with the expression of its host
gene. For visual clarity, only 1000 randomly chosen exons are included in the plot.
e Boxplots showing the differential inclusion of embryonic positive (EP) and
embryonic negative (EN) events during pre-natal (n = 11) and post-natal (n = 21)
stagesof development. Eachdata point in theboxplots is themedian inclusion level
of the EP and EN exons at each developmental time point sampled by Cardoso-
Moreira et al.29. The horizonal line in themiddle of boxplots is themedian value and
the lower andupperedges of theboxes correspond to the 25th and75th percentiles
of the inclusion level (y axis). Extending verticallyupwards/downwardsof theboxes
are the lines showing 1.5 times the interquartile range (i.e., distance between 25th
and 75th percentile). Dots are the outliers. Source data for these figures are pro-
vided as a Source Data file.
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Fig. 2 | Embryonic splicing events in cancer. a Bar plots showing the odds ratio
and 95% confidence intervals (whiskers) calculated using Fisher’s test to assess the
statistical significance of overlap between embryonic splicing events and fre-
quently increased/decreased events in cancer for brain, kidney, and liver. The
numbers at the top of each bar are FDR-corrected two-sided p-values from Fisher’s
test. b Dot plots for Pearson’s correlation between the median inclusion level of EP
and EN events andmean expression (log (tpm+ 1)) of the cancerSEA hallmark gene
sets in cancer samples. c Boxplots distribution of hazard ratios of the EP (n = 3051)
andEN (n = 3457)detected inbrain, kidneyand liver in their corresponding cancers.
The ‘Other’ set (n = 29,349) of exons are the remining exon and serve as genome-
wide control. The cancer types used in this analysis are LGG forbrain, LIHC for liver,
and KIRP for kidney. Two-sided p-values from Wilcoxon’s test are shown. d Venn

diagram shows the overlap between the EP events detected in three tissues.
e Boxplots showing the proportion of specific EP events (detected in only 1 tissue)
and common EPs (detected in all three tissues),with better (HR < 1, FDR <0.1, n = 10
for common EP events and n = 12 for specific EP events) or worse survival (HR > 1,
FDR <0.1, n = 10 for common EP events and n = 12 for specific EP events) across 20
different cancer types from TCGA. Each data point is a cancer type. Two-sided p-
values from Wilcoxon’s test are shown. In boxplots (c, e), the horizonal line in the
middle is themedian value and the lower and upper edges of the boxes correspond
to the 25th and 75th percentiles. Extending vertically upwards/downwards of the
boxes are the lines showing 1.5 times the interquartile range (i.e., distance between
25th and 75th percentile). Dots are the outliers. Source data for these figures are
provided as a Source Data file.
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of EP events resulted in poor prognosis of in multiple cancer types
(Fig. 2e, single-tailed p value <0.05), further underscoring the
embryonic roots of splicing changes in cancer.

Alternatively spliced transmembrane-region and nitrosylation
domain may regulate N-linked glycosylation and retrograde
cellular transport during development and cancer
To get insights into the functions potentially affected by dynamic
inclusion of EP and EN exons, we performed molecular functional
enrichment analysis of the genes containing the EP and ENevents. In all
organs, we observed a significant enrichment of Ras GTPase binding,
cell adhesion, and cytoskeleton binding classes suchas cadherin, actin,
andmicrotubules (SupplementaryFig. 3a). Brain andLiver EP/ENgenes
were additionally enriched for dynactin and clathrin binding (Supple-
mentary Fig. 3a). These processes promote tumorigenesis by mod-
ulating the cytoskeleton and cellular transport during the proliferation
and migration of cancer cells34,35. A more detailed discussion is pro-
vided below in the “Discussion” section.

To gain further insights into themolecular role of EP and ENexons
and investigate their link with oncogenesis, we identified protein
domains from PFAM database36 enriched among the EP/EN exons
(“Methods”). Three domains— transmembrane-region domain (TRD),
nitrosylation domain (ND), andWD40—are enriched among EP and EN
exons in all three organs (Fig. 3a), leading us to speculate their
potential role in some of the functions performed by the host genes of
EP and EN exons. To explore this potential link, we identified the gene
subsets whose EP/EN exons contained these domains (total 6 gene
subsets per tissue: 3 domains × 2 EP/EN gene sets) and performed
molecular function enrichment analysis for each subset (Fig. 3b). As
expected, enriched molecular functions in a gene set could be unam-
biguously attributed to the corresponding domain. For instance, gene
subsets of WD40 domains were enriched for ubiquitin binding, con-
sistent with the established role of WD40 as binding interfaces for
ubiquitin proteins37. Likewise, the genes containing the transmem-
brane region domain were indeed enriched for various kinds of
transmembrane transporters (Fig. 3b). Further, the assessment of
overlap among the host genes of EP and EN exons harboring these
domains across tissues indicates that the observed enrichment of
protein domains is not driven by the same set of genes but instead,
multiple host genes of EP and EN exons coordinately splice in and out
these domains across tissues (Fig. 3b). To probe the interplay between
these enriched molecular functions and biological processes affected
by dynamic inclusion of these domains, we performed biological
processes enrichment analysis on the same gene sets and assessed the
overlap of genes having a specific enriched molecular function with
those having a specific enriched biological process.

The observed correspondence between molecular function and
biological processes among the host genes of EP and EN exons is well
supported. For instance, in brain, host genes of EN exons with a
transmembrane domain and encoding various types of transporters
(molecular function) are predominantly involved in cross-membrane
transport (biological process) (Fig. 3c).

Moreover, in brain and liver EP exons, the molecular function
oligosaccharyl transferase activity significantly overlapped with bio-
logical processes related to N-glycosylation of proteins (Fig. 3c, and
Supplementary Fig. 3c), a modification which typically takes place in
the phospholipid bilayer of ER and Golgi bodies through the multi-
subunit oligosaccharyl transferase complex (OST). We observed that
four subunits of OST showed a coordinated reduction in the inclusion
of TRD from pre- to post-natal stages, which increased again in cancer
patients in brain (Fig. 3e), with TUSC3 and RPN2 undergoing greatest
change. This suggests that modulation of transmembrane localization
of OST through alternative splicing of TRD during embryogenesis
might directly impact the process of N-glycosylation. Notably,
N-glycosylation of several proteins have been implicated in cellular

proliferation and migration by modulating the cell-matrix
interactions38. Therefore, increased inclusion of TRD among the sub-
units of OST might help the cancers (Fig. 3e) to upregulate the
increased demand for N-glycosylation. To the best of our knowledge,
the role of alternatively spliced TRDs among the subunits of OST
complex in regulation of N-glycosylation has not been reported so far.
To support this conclusion that removal of TRD can affect the function
of OST by affecting its localization, we highlight the example of an
integrin gene, ITGA2B, which contains an EN exon encoding TRD
(Supplementary Data 7) in developing liver. Past research has shown
that ITGA2B is alternatively spliced in melanoma, prostate cancer, and
leukemia producing a truncated isoform lacking the transmembrane
and cytoplasmic domain39,40. This truncated isoform, instead of inte-
grating into the plasma membrane, is secreted into the extracellular
matrix, unscrewing the adhesion, and promoting the migration of
cells. Our analysis suggests that a similarmechanism is used in the case
of OST complex, where the removal of TRDs would result in its dis-
sociation from ERmembrane, impeding the process of N-glycosylation
of proteins.

Similar analysis for ND revealed that host genes of EN exons
containing this domain in the brain were significantly enriched for the
molecular functions related to GTPase activity and its regulators
(Fig. 3b). Previous studies have implicated the role of nitrosyla-
tion modification in the upregulation of GTPase activity41,42. Our result
thus suggests the role for alternatively spliced ND in the modulation
GTPase activity during embryogenesis and cancer. In fact, few of the
genes containing nitrosylation domain among brain EN exons, such as
RAB6A and RAB6B, are GTPases belonging to RAS oncogene family,
hinting at autoregulation of their GTPase activity through dynamic
inclusion and exclusion of nitrosylation domain. Interestingly, one of
the small GTPases, the RHOA, was previously shown to be inactivated
through alternative splicing in diffuse-type gastric carcinoma cells43.
We found that the exon involved in this splicing event (3rd exon) indeed
encoded a ND and was embryonic negative (EN) in liver and kidney.
This supports the broader role of the alternatively spliced ND in reg-
ulating the activity of the various small GTPases and cellular transport
during development and cancer (Fig. 3d).

As for transmembrane domain, we obtained the genes having a
ND among the EN exons in brain and identified the correspondence
between the enriched molecular functions and biological processes
(Fig. 3d).We observed that genes having GTPase activitywere involved
in Rab protein signal transduction and retrograde vesicle transport
from endosomes to Golgi bodies to endoplasmic reticulum (Fig. 3d),
the processes where GTPases are known to play a critical role44,45.
Among the GTPases having a ND in their EN exons, ARL1 gene had the
greatest change in the inclusion of ND from pre-natal to post-natal
stages and then in cancer (Fig. 3f). Our analysis thus suggests the
underappreciated role of alternatively spliced ND in the regulation of
the cytoplasmic transport by modulating the activity of GTPases.
Additionally, someof the genes containing aNDamongbrainENexons
were enriched for the molecular functions related to BH-domain
binding, death-domain binding and MAP-kinase signaling, which cor-
responded to the processes related to intrinsic apoptotic signaling
pathways (Fig. 3d), potentially implicating exclusion of ND in mod-
ulating apoptosis46.

Overall, our results implicate recapitulation of embryonic alter-
native splicing patterns of transmembrane and nitrosylation domains
in several key oncogenic processes.

Splicing regulatory model of EP events reveals key splicing fac-
tors dysregulated in cancer
Splicing factors (SF) control the choice and inclusion level of alter-
natively spliced exons47. To identify potential SFs regulating
embryonic splicing, we trained a partial least squares regression
(PLSR)model to predict themedian inclusion level of EP events based
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Fig. 3 | Functional assessment of EP and EN exons. a Dot plot showing the
enrichment of domains in EP and EN events across three tissues. Size of the dots is
scaledaccording to themagnitudeof odds ratio calculatedusing Fisher’s exact test;
solid and hollow dots respectively indicate significant and non-significant domains
based on FDR adjusted two-sided p-value threshold of 0.1. b Molecular functional
enrichment across three organs for the host genes of EP and EN events containing
nitrosylation, transmembrane-region and WD40 domains (indicated along the
columns). The heat colors indicate –log10 of FDR adjusted one-sided p-value of
enrichment from Fisher’s test as implemented in clusterProfiler library in R.
cHeatmapshowing the cooccurrenceof enrichedbiological process (columns) and
molecular functions (rows) among the genes containing transmembrane-region

domain in EP exons in brain. d same as (c) but for nitrosylation domain in EN exons
in brain. e, f The inclusion of EP exons encoding TRD among the subunits of OST
complex (e) and EN exons with ND among the GTPases potentially involved in the
regulation of vesicle transport (f). In e, f, n = 11 for pre-natal, n = 21 for post-natal,
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and 75th percentile). Dots are the outliers. Source data for these figures are pro-
vided as a Source Data file.
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on the expression levels of 442 annotated SFs (“Methods”, Supple-
mentary Data 5). In each organ, trained solely on the developmental
data, our model predicted the median inclusion level of EP events in
independent tumor samples (TCGA) as well as normal samples
(GTEx) with a high accuracy (average correlation between predicted
and observed EP levels ~0.88 for TCGA and 0.84 for GTEx; Fig. 4a and
Supplementary Fig. 4a). Further, the predicted EP inclusion values
can distinguish GTEx normal samples from their corresponding
TCGA cancer samples with a high accuracy in brain and medium
accuracy in liver and kidney (Supplementary Fig. 4b), underscoring
that the model can predict the cancer-associated changes in the EP
splicing.

Next, we obtained the list of splicing factors that were significant
positive predictors of median EP splicing during embryonic develop-
ment based on their regression coefficients in the PLSR model
(“Methods”) and termed those as critical splicing factors (CSFs, Sup-
plementary Data 5). As expected, CSFs in each organ had higher
expression during the prenatal stage of development and underwent
significant upregulation in their corresponding cancer (Fig. 4b).
Though our focus is only the positive regulators of EP splicing as those
are upregulated in cancers relative to normal tissues, we confirmed
that splicing factors with negative regression coefficients in the
PLSRmodel undergo downregulation in cancers relative to the normal
tissues and are potential negative regulators of the EP events
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Fig. 4 | Splicing regulatory model of EP events reveals key splicing factors
dysregulated in cancer. a Scatter plot of the actual and predicted median inclu-
sion level of EP events across TCGA samples in a tissue-specific cohort. Blue lines
depict the bestfitting lines basedon linear regressionbetween actual andpredicted
median inclusion of EP events. Pearson’s correlation coefficients and two-sided p-
values are shown in the plots. b Boxplot distribution of fold-change of critical
(n = 119 for brain,n = 167 for liver, andn = 45 for kidney) andnon-critical (n = 322 for
brain, n = 274 for liver, and n = 396 for kidney) splicing regulators of EP splicing
events duringdevelopment (left) and incancer (right). The cancer typesused in this
analysis are LGG for brain, LIHC for liver, and KIRC for kidney. Two-sided p-values
fromWilcoxon’s test are shown. c Boxplots showing distributions of net CNVs gain
(“Methods”) in critical splicing factors in patients stratified based on the expression
of the splicing factors (n = 100 for brain and liver and n = 45 for kidney). Two-sided
p-values from Wilcoxon’s test are shown. d Bar plots showing the proportion of
critical andnon-critical splicing factorswhich result in the poorprognosis of cancer
patients in three cancer types. The odds ratio (OR) and FDR-adjusted two-sided p-
values (pval) shown next to each plot are calculated using Fisher’s exact test by
comparing the proportion of critical and non-critical splicing factors having worse
prognosis in cancer patients.Worse prognosis wasdefinedbasedon>1 hazard ratio

in cox-regression at the FDR level of 0.3. e Schematic illustration of mutation
analysis (left) and the distribution of the regression coefficients (y-axis) of splicing
factors resulting in decrease (n = 14) or increase (n = 6) in themedian inclusion level
of EP events in the mutated samples compared to expression matched unmutated
samples. Two-sided p-values from Wilcoxon’s test are shown. f Boxplots showing
the proportions of liver EP events which decrease in their inclusion (ΔPSI < −0.1)
upon the shRNA knockdown of RNA binding proteins (n = 17 critical and n = 36 not-
critical) in HepG2 cell line from ENCODE database. Single-sided p-value is derived
from the Wilcoxon’s test with the alternative hypothesis that deletion of CSFs
affects a greater proportion of EP splicing events as compared to the deletion of
non-critical splicing factors. g Proportionof critical and not-critical regulators of EP
splicing among the RNA binding proteins taken from Seiler et al. 54 and known to
harbor drivermutations in single ormultiple cancer types. The odds ratio and two-
sided p-value derived from this Fisher’s test are shown. In boxplots (b, c, e, f), the
horizonal line in the middle is the median value and the lower and upper edges of
the boxes correspond to the 25th and 75th percentiles. Extending vertically
upwards/downwards of the boxes are the lines showing 1.5 times the interquartile
range (i.e., distancebetween25th and 75th percentile).Dots are the outliers. Source
data for these figures are provided as a Source Data file.
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(Supplementary Fig. 4c). Further, the deletion of orthologous genes of
brain CSFs results in defective nervous system development in mice,
and CSFs from all three tissues are much more likely to result in pre-
weaning lethality as compared to the other splicing factors (Supple-
mentary Fig. 4d, Supplementary Data 6), further supporting the
developmental role of CSFs.

We observe that cancer patients with higher expression of CSFs
and correspondingly higher inclusion level of EP events have a sig-
nificantly greater number of copy number amplifications in CSFs
(Fig. 4c). In addition, a gain in CSF expression is significantly associated
with worse patient survival in cancer (Fig. 4d).

To assess whether CSFs play a causal role in regulating EP events,
we tested if the EP inclusion level is decreased in tumor samples
bearing nonsense (inactivating) mutations in CSFs. We first identified
all SFs whosemutant samples have lower and higher EP inclusion than
the wildtype samples and found that potentially causal SFs (i.e., SFs
whosemutant samples have lower EP inclusion relative toWT samples,
Methods) have significantly higher (and positive) regression coeffi-
cients as compared to the other SFs in the PLSR model of EP splicing
(Fig. 4e), establishing a potentially causal role of CSFs in regulation of
EP events. We ensured that our results are not confounded by SFs
expression differences between the mutant and wildtype samples
(“Methods”).

We further ascertained that PLSR can identify the causal factors
underlying the inclusion of EP events by using shRNA knock-down
followed by RNA-seq data for RNA binding proteins in HepG2 (liver
cancer) cell line from ENCODE database48. Following an identical
procedure as above, we learned the CSFs critical for the inclusion of
liver-specific EP events in HepG2 cell line. We observed that knocking
out these CSFs is much more likely than other splicing factors to
decrease the inclusion of EP events (“Methods”; Fig. 4f), providing a
strong support for the causal role of CSFs in EP splicing.

Some of the CSFs identified in developing human tissues are
known drivers of various solid and hematological malignancies. For
instance,CDC5L and PCBP2 (CSFs in brain) are reported topromote the
growth of gliomas49,50 and bladder cancers51. Additionally, SF3B1 (a CSF
in kidney and liver) andU2AF2 (CSF in liver) are frequentdrivers of lung
and pancreatic adenocarcinomas52,53.

Besides the aforementioned examples, the pooled set of CSFs
from all three tissues identified in our work was significantly enriched
for 119 RNA binding proteins which were previously identified as the
driver genes in one ormore cancer types54 (Fig. 4g, Methods). Further,
a greater fraction of CSFs in brain, liver, and kidney had mutational
hotspots in their corresponding cancers as compared to non-critical
splicing factors (Supplementary Fig. 4f), further underscoring the role
of CSFs in promoting malignancy.

Overall, these results reveal potentially causal SFs underlying the
EP events and link the induction of such SFs, potentially via copy
number amplification, to cancer. In the TCGA cancer samples, a
medianof 47%, 32%, and 16%of theCSFswere respectively upregulated
(fold-change > 1.5) in brain, liver, and kidney cancers as compared to
normal samples (Supplementary Fig. 4g). Considering this along with
the mutational and shRNA analysis presented above, it appears that,
although the deletion of a single CSF could have a small (albeit sig-
nificant) effect on the inclusion level of a subset of EP exons, the broad
reprogramming of splicing observed in cancers is achieved by activa-
tion of several CSFs, possibly driven by upstream transcription factors
as we investigate in the next sections.

Embryonic splicing events are associated with proliferation
rates in cancer cell lines
Our results above (Figs. 1b, 2a) suggest that increased inclusion of EP
events in tumors might be involved in mediating oncogenic processes
such as rapid proliferation, EMT, and angiogenesis. Leveraging the
DepMap database (https://depmap.org/portal/) that includes RNA-seq

data and proliferation rates inmultiple cancer cell lines, we find that in
liver and brain, there is a negative (respectively positive) association
between the doubling time and the median EP (respectively EN)
inclusion levels across cell lines derived from the organ-specific cancer
type (Supplementary Fig. 5a), hinting at a possible link between EP/EN
usage and proliferation rate of cancer cell lines.

To further consolidate this link, we calculated the proportion of
EP and EN exons among all the splicing events that were strongly
correlated with the doubling time of cancer cell lines (“Methods”).
We observed that the brain and liver EP and EN events were strongly
enriched among the exons which were respectively negatively
(PCC < −0.5) and positively (PCC >0.5) correlated with the doubling
time of their corresponding cell lines in CCLE data (Fig. 5a, Supple-
mentary Fig. 5a). This enrichment implies that exons linked with
proliferation rates of cancer cell lines were more likely to be
embryonic in nature. The lack of association between embryonic
events and doubling times of cancer cell lines for kidney could be the
result of heterogeneity as discussed below.

Further, splicing regulatory models learned from the develop-
mental data could accurately predict the EP event inclusion in the
corresponding cell lines (Fig. 5b). Collectively, these observations
further validate the links between CSFs and proliferation, mediated by
EP events. Given the links between CSF activity and proliferation, we
expect that inactivation (by CRISPR or RNAi) of the CSFs will have an
adverse effect on the proliferation rates of the cell lines. Indeed, we
found that in liver cancer-derived cell lines, the more critical a SF
(based on PLSR coefficient), the greater was the dependencyof the cell
line on that SF (negative dependency scores, Supplementary Fig. 5b),
supporting a functional role for CSFs; however, we did not see this
trend in brain and kidney, as discussed below. Further supporting the
role of CSFs in malignant transformation, we found that in the single-
cell transcriptome of liver and brain (“Methods”) tumor micro-
environment, CSFs were specifically expressed in the malignant but
not in non-malignant cells (Fig. 5c). Collectively, these observations
link the role of CSFs in tumor cells with cellular proliferation rates
through regulation of specific AS events, which might serve as
potential therapeutic targets.

CSFs are potentially regulated by MYC, FOX, and BRD family
transcription factors
Next, we investigated potential upstream transcriptional regulators of
CSFs, as targeting them may have a broader effect on CSFs, with the
resulting changes in EP inclusion potentially improving patient prog-
nosis. We applied four criteria to identify high-confidence upstream
transcriptional regulators of CSFs (Fig. 6a). First, as an initial filtering
step, we utilized a large collection of ChIP-seq datasets across multi-
ple cell lines curated in the TFEA.ChIP database55 and shortlisted TFs
whose binding was significantly enriched within the promoter regions
of CSF as compared tonon-critical splicing factors (nCSFs) of EP events
(first column in Fig. 6b; “Methods”). Next, we used the KnockTF
database56, which details transcriptome changes upon TF deletion, to
calculate the enrichment of CSFs relative to nCSFs among the down-
regulated targets following TF deletion and retained significant hits
(second column in Fig. 6b, Methods). A major limitation of KnockTF is
low coverage of TFs. We therefore applied two additional computa-
tional approaches to filter the TFs shortlisted based on TFEA.ChIP.

First, for each factor shortlisted based on TFEA.ChIP, we inferred
its in-silico targets using the ARACNe software tool57 and selected TFs
whose in-silico targets were more significantly enriched for CSFs
relative to nCSFs (third column in Fig. 6b, Methods). Secondly, among
the list of ChIP-seq filtered regulators, we identified TFs whose
expressionwasmore strongly correlatedwith CSFs as compared to the
nCSFs in cancer transcriptomic data (fourth column in Fig. 6b, Meth-
ods). Overall, we retain in each organ, the TFs that (after the ChIP-seq-
based filtering) either qualified the experimental KnockTF-based

Article https://doi.org/10.1038/s41467-022-35322-1

Nature Communications |         (2022) 13:7664 8

https://depmap.org/portal/


criterion or both of the computational filters. Collectively, these
results implicateMYC, FOX (specifically FOXM1), andBRD family ofTFs
in the regulation of EP events through upregulation of CSFs and may
represent master regulators of broad splicing changes associated with
development and cancer. Such master regulators and key CSFs of EP
splicing could be plausible druggable targets (Supplementary Meth-
ods & Supplementary Table 1) to halt cancer progression by impeding
the processes mediated by EP splicing events.

Discussion
The availability of transcriptomic datasets of tumors from TCGA and
PCAWG consortia have facilitated the genome-wide analysis of alter-
native splicing changes in cancer elucidating their prognostic value58,

genetic basis59,60, and the discovery of tumor neoantigens generated
by alternative splicing61. However, none of these studies analyzed the
broader developmental context of splicing changes in cancer. Lever-
aging recently available temporal developmental transcriptomic data
in three human organs, in this work, we have shown that the genome-
wide splicing landscape of cancers significantly reverts to the early
embryonic developmental stage of their tissue of origin, strongly
implicating developmental splicing events in oncogenesis and tumor
progression.

Similar to gene co-expression modules, inclusion of multiple
exons across genes is coordinated to affect specific cellular functions
during differentiation62,63, cell state transition64, apoptosis65, and hor-
monal induction66. Our results suggest that coordinated programs of
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EP and EN splicing events are involved in embryonic processes, such as
cellular proliferation, apoptosis, EMT, migration, and that cancers
seem to misappropriate these coordinated exon inclusion events to
revert to an embryonic-like state. Evolutionary comparisons in past
have shown that alternative splicing results in neo-functionalization
and increases proteome complexity of genes67,68 which is often driven
by the divergence of exonic structure of genes. Changes in exonic
structure of genes have been observed in cancers as well viamutations
that create splice sites69. Therefore, we speculate that alternative
splicing can promote carcinogenesis through two distinct routes,
either through the re-activation of multiple aspects of the embryonic
physiology, or by fueling the functional novelties and proteome
complexity driven by creationof new splicing events, or a combination
thereof.

Further, EP and EN events ascertained based on developmental
context alone are significantly prognostic in the corresponding can-
cers in TCGA. For instance, the inclusion level of EP and EN events
respectively predicted worse and better survival of cancer patients,
underscoring the value in studying fetal development to better

understand cancer mechanisms. Moreover, the enrichment of the EP
exons among the splicing events which had a negative correlationwith
doubling time (equivalently, positive correlation with proliferation
rate) of brain and liver cancer cell lines provides an independent
functional validation for the role of these splicing events in mediating
cellular proliferation, which is relevant to both development and
cancer. However, these associations do not hold true for the case of
kidney cancer cell lines. While cell lines are standard choice to model
several diseases, they do not entirely capture the in vivo complexity. In
our analysis, although we derived the EP and EN exons from the
developing human embryos and yet, rapidly proliferating CCLE cancer
cell lines indeed have higher usage of EP exons and lower usage of EN
exons in brain and liver, suggesting a conserved cell-intrinsic links
between splicing and proliferation.

Previous research has shown that AS can affect cytoskeleton,
enzymatic properties, and membrane localization of proteins70. Here
we observe that the molecular functions related to cytoskeleton
binding and regulation of GTPase activity and cellular transport were
highly enriched among EP and EN exons across all three organs we
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studied (Supplementary Fig. 3a). Thesemolecular functions are central
to cellular proliferation through regulation of cell cycle71–75 and cellular
migration76–78 and, consequently, have emerged as important players
in cancer progression and metastasis35,79.

The analysis of proteindomains enriched amongEP andENevents
further suggested their functional coordination in regulating diverse
cellular processes such as proliferation, migration, neuronal physiol-
ogy, and stress resistance. For instance, proliferation andmigration of
cells relies on alterations in the cytoskeleton, extracellular matrix, and
cell adhesion, which aremodulated by N-glycosylation of proteins like
actin, cadherins and integrins38. Our observation that subunits of OST
(including TUSC3 and RPN2) undergo coordinated splicing of their
TRDs among EP events suggests the role of this splicing in the reg-
ulation of N-glycosylation during organogenesis (Fig. 3c). Further
TRDs in vesicle trafficking (PAQR3, PRAF2, SEC22) and mitochondria
(ABCB6, ABCB8, and SDHC), WD40 in E3 ligase involved in protein
degradation (DTL, FBXW9,WDR48), andNDs inGTPases formembrane
signaling (ARF4, TESK1) were coordinately spliced among the brain EP
exons. This suggests the functional coordination in energymetabolism
and protein synthesis/processing during neuronal development is, in
part, mediated via alternative splicing. In accordance, knocking down
CSFs that regulate brain EP events result in the defects in the nervous
system development in mice (Supplementary Fig. 4d), supporting the
essential role of coordinately spliced EP events in organ development.

The EP and EN-mediated functional coordination is further illu-
strated in the case of coordinately spliced protein domains among the
EN events in brain (Fig. 7b). Coordinately spliced ND in the GTPases
involved in vesicle trafficking (ARL1 and RAB family genes), TRD in the
endoplasmic reticulum-associated proteins involved in the ceramide/
inositol synthesis (CDITP, CERS2, KDSR, etc.) and synaptic proteins

involved in neuronal signaling (DAGLB, KCNN2, MCTP1, etc.) suggests
the coordination inpost-natal neuronal function suchas settingup and
firing rapid action potentials (Fig. 7b, right panel) and loss thereof in
cancer (Fig. 7b and Supplementary Fig. 6b).

Moreover, for a vast majority of the EP domains, their inclusion
level, which is higher in pre-natal stages, switches back to pre-natal
stages in cancer (Fig. 7a and Supplementary Fig. 6a). This suggests that
host genes containing these domains drive cancer progression and EP
exons of these genes can be potential therapeutic anti-cancer targets.

We note thatmost of the protein domains are enriched among EN
exons (Fig. 3a), implying that a relatively larger fraction of annotated
domains is involved in processes that are active postnatally. A general
bias in functional roles of alternatively spliced domains to be involved
in development-related functions has been noted previously80 but the
differential functional underpinnings of this observation relative to EP
and EN are currently unclear and will require further investigation.

Many of the EP/EN events are previously reported and experi-
mentally validated to be alternatively spliced in various diseases
including cancer (Supplementary Data 8), For instance, APAF1 gene
encodes an apoptotic protein and hosts an EN exon encoding WD40
domain in developing brain. Interestingly, a previous report has shown
that APAF1 is alternatively spliced in prostate cancer cell lines, pro-
ducing a shorter isoform called APAF1-ALT lacking WD40 domain81.
Moreover, this shorter isoform impeded the induction of DNA-
damage-induced apoptosis in cells, thereby allowing cells to acquire
DNA-damage-induced resistance against treatment. Thus, the change
in the apoptotic roles of APAF1 via alternatively spliced WD40 domain
appears to be generalmechanismsemployedduring embryogenesis as
well as cancer. Additionally, the gene FLVCR1 encodes a heme trans-
porter and hosts an EN exon encoding TRD domain in brain. Previous
work has shown that various alternatively spliced isoforms of this gene
lacking the TRD are expressed in the case of DiamondBlackfan anemia
(DBA). Importantly, the patients with DBA have an elevated risk of
neoplastic growth82. This example implies that the regulation of iron
metabolismby controlling its transport by alternatively spliced FLVCR1
gene could be a crucial mechanisms to regulate iron levels in devel-
oping human brains83 as well as cancers. The truncated isoform of
integrin ITGA2B lacking the transmembrane domain is another exam-
ple, which was previously reported to be secreted into the ECM in
various cancers, breaking adhesion and facilitating cell migration40.

Further, many of the tetraspanins, which are scaffolding proteins
present at the membrane of the cell, and mediate various cellular
functions such as proliferation, adhesion and signaling84 contained an
EP or EN exon encoding TRDs across the tissues (Supplementary
Data 7). Alternatively spliced TRD in these proteins are reported to
generate isoforms having alterations in the tetraspanin-enriched
microdomain functions, which includes cell signaling and cell
adhesion84,85. These examples (and Supplementary Data 8) support
that the EP and EN events can indeed change the function of proteins
and contribute to the broad functional convergence observed
between embryogenesis and cancer.

Several single-cell RNA-seq studies in the recent past have noted a
general similarity in development and cancer86–88. Therefore, our
results indicate that these similarities are hinged upon amuch broader
and coordinated reprogramming of splicing in cancer cells back to
their embryonic counterparts.

Critical splicing factors, which were inferred to regulate the
inclusion of EP events based solely on the embryonic developmental
data, are upregulated in cancer, and confer poor prognosis to the
patients. Furthermore, inactivating mutations of critical splicing fac-
tors in cancer patients and shRNAknock-down inHepG2cell line result
in the decreased level of embryonic splicing, strongly supporting their
causal role in regulating embryonic splicing events. The causal role
of CSFs also supported by their significantly higher, and experimen-
tally quantified, dependency scores in the DepMap dataset in
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liver cancer-derived cell lines. However, wedidnot see this trend in the
brain and kidney, whichmaybe attributed to divergent physiology and
regulatory networks in cell lines as compared to tumors in the context
of the tumor microenvironment. Although we observed that sig-
nificant numbers of CSFs were drivers inmultiple cancer types (Fig. 4g
and Supplementary Fig. 4e), we did not observe a progressive increase
in the mutation load (defined as total no. of mis-sense mutations per
sample) amongCSFs in the late-stage cancers as compared to the early
stages (Supplementary Fig. 4h). This suggests that the mutational
perturbation of CSFs and the corresponding change in splicing profile
is involved in tumor initiation; however, it is not clear if different sets of
CSFs are involved in initiation and progression of cancer and will
require longitudinal data. Notably, consistent with the previous
reports implicating the role of alternative splicing in the regulation of
splicing factors89, we tooobserved that a significant fraction of splicing
factors hosted an EP and EN events, with CSFs having relatively higher
proportion of EP and EN events (Supplementary Fig. 4i). Therefore, we
speculate that the action of CSFs in promotingmalignancy ismediated
through their specific isoforms requiring in depth investigation in
future.

Together, these observations highlight the inferred critical spli-
cing factors as potential therapeutic targets against cancer
progression.

Further we found that CSFs in each developing organ, as well as
the corresponding cancer,were likely regulatedby FOX (FOXM1),MYC,
and BRD family of transcriptional regulators. Regulation of splicing
factors and splicing events by MYC has been previously noted31,90. A
recent report shows that MYC-driven splicing factors regulate
~4000 splicing events across cancers91. Consistent with our findings,
FOX and the MYC family of regulators control growth, proliferation,
and survival of cells in multiple contexts during embryogenesis as well
as cancer92,93. Our work extends the previous studies by showing the
regulation of splicing factors and functionally coordinated embryonic
splicing events by MYC, BRD, FOX family of TFs in the developmental
context, thus providing further mechanistic links between develop-
ment and cancer. Theseobservations hints that the embryonic reversal
of cancer splicing drives cancer in conjunction with much broader
transcription and epigenetic reprogramming mediated via perturba-
tions in various master regulators (such asMYC and FOXM1) as well as
critical splicing factors.

Although gene regulation is best studied experimentally using
gene knockouts followed by RNA-seq experiments to reconstruct
transcriptome-wide gene regulatory networks94, such datasets do not
always exist for desired transcription factors in every cell line/model
system in humans. In our analysis presented in Fig. 6, we have used
KnockTF, which is one such database, along with three other compu-
tationalfilters to identify the keymaster regulators of CSFs (Fig. 6b, 2nd

column). Our results suggest that the broad changes in the expressed
isoforms of key genes driven by the upregulation of CSFs is likely a
major mechanism by which these TFs exert their physiological effects.
Therefore, targeting the upstream regulators of CSFs might result in
broader changes in genome-wide splicing and improve the survival
rates of patients. But such an approach is likely to suffer from unin-
tended side effects owing to the lack of specificity and pleiotropic
nature of transcription factors. Therefore, direct targeting of EP exons,
through recently developed CRISPR-based techniques95,96, as opposed
to their upstream regulators, might result in specific lethality in the
tumor cells. In the future, transcriptomic experiments following the
deletion of CSFs or their upstream regulators would be necessary to
establish the proposedmechanistic links and explore their therapeutic
potential.

Collectively, our multi-pronged investigation not just con-
ceptually enhances the understanding of broad functional roles and
regulation of alternative splicing in the context of development and
cancer, but also suggests putative cancer therapeutic targets. Our

work also provides a framework to study the cellular mechanisms
implicated in development and cancer using other molecular mod-
alities such as miRNA and lncRNA activities, DNA methylation and
histone modification profiles, alternative promoter, and poly-A usage.

Methods
Datasets and quantification of exon inclusion
For brain, liver, and kidney, uniformly processed RNA-seq data for
tumors from TCGA (https://www.cancer.gov/tcga) and normal sam-
ples from GTEx97 were downloaded from the UCSC-Xena browser
(data version V7). We used UCSC-Xena browser98,99 as it hosts the
datasets from UCSC toil RNA-seq recompute compendium100 which
were normalized for multiple computational as well as within cohort
batch effects. The UCSCXenaTools library in R98 was used to down-
load transcript-level TPM values computed using Kallisto101; the
details of data integration and processing can be obtained from
UCSC-Xena browser (https://xenabrowser.net/). In total, we obtained
the expression levels of 197,046 transcripts across all samples. The
number of samples obtained are brain cancer – Lower grade glioma
(LGG): 523; Glioblastoma GBM: 172, normal brain – brain cerebellum:
118; brain cortex: 107, liver cancer – Liver hepatocellular carcinoma
(LIHC): 369, normal liver –110, kidney cancer – Kidney renal papillary
cell carcinoma (KIRP): 321; Kidney renal cell carcinoma (KIRC) 595,
normal kidney – 27. For developmental data29, we obtained the raw
reads from the array express using the accession number E-MTAB-
6814 and computed the transcript level TPM values using Kallisto101

and the transcriptome index based on Gencode version v23 (https://
www.gencodegenes.org/human/release_23.html) annotations, the
same version which was used by UCSC-Xena. We used pseudoalign-
ments based approach using Kallisto software to process RNA-seq
datasets as it is much faster than classical alignment101,102, and esti-
mated TPMs showed very high concordance with RT-PCR-based
measurements103,104. The data includes multiple pre-natal and post-
natal time points in each organ (Supplementary Data 1). To quantify
the inclusion level of exons in each sample, we calculated the ‘per-
cent-spliced-in’ (PSI) value for each exon, which ranges from 0-1 (i.e.
from fully excluded to fully included), using SUPPA-2105. We choose
SUPPA2 as it enabled us to directly use the elegant datasets from
UCSC Toil RNA-seq recompute compendium100 hosted at toilhub of
UCSC-Xena browser98, ensuring uniform processing and normal-
ization of batch effects, Additionally SUPPA2 is much faster than
most other tools and requires lesser storage space as it can use pre-
computed TPM values105. Further, we validated our main conclusion,
namely, reversal of splicing events in cancer to pre-natal state of the
corresponding tissue, using an entirely different pipeline – STAR 2
pass alignment106 followed by rMATs107 (Supplementary note 2).
Transcript-level TPMs were converted to gene-level TPMs and sub-
sequently quantile normalized as needed for the follow-up analyses.
All the scripts used for downloading and processing the RNA-seq
datasets are available in at https://github.com/hannenhalli-lab/
AltSplDevCancer.

Developmental splicing events
To identify splicing events deemed to be involved in embryonic
development, we adapted a previously published strategy called
PEGASAS31. PEGASAS identifies the alternative splicing events that
correlate with the activity of a specific biological pathway. In this
study, we identified developmental exons via a three-step process as
follows.

Step 1: We scored the activity of each of the 332 KEGG pathways30

at each time point during development using the median of log-
transformed expression of its constituent genes, resulting in a 332 × N
activity matrix, where N is the number of developmental time points
that were sampled for each tissue and are given in Supplementary
Data 1. Clustering this activity matrix reveals two broad clusters

Article https://doi.org/10.1038/s41467-022-35322-1

Nature Communications |         (2022) 13:7664 12

https://www.cancer.gov/tcga
https://xenabrowser.net/
https://www.gencodegenes.org/human/release_23.html
https://www.gencodegenes.org/human/release_23.html
https://github.com/hannenhalli-lab/AltSplDevCancer
https://github.com/hannenhalli-lab/AltSplDevCancer


(Supplementary Fig. 1a)—one active pre-natally and the other active
post-natally.

Step 2: We applied an additional smoothing procedure in PCA
space where our goal was to quantify each pathway’s tendency to be
preferentially oriented towards a specific developmental timepoint. In
5-dimensional PC space (first 5 PCs explain ~65% of variance), each
timepoint occupies a unique coordinate based on the PC scores. In this
space, similarly, each pathway corresponds to 5-dimensional vector of
the pathway’s loading in each of the 5 PCs.Wequantify the preferential
orientation of a pathway toward a specific timepoint as cosine simi-
larity between the loading vector and the location of the time point in
the 5-dimensional space. This procedure yields a smoothed 332 × N
matrix clearly segregating 332 pathways into two broad groups based
on their preferential activity during pre- or post-natal stages of
development (Fig. 1a). The grouped pathways were correspondingly
called embryonic positive and embryonic negative pathways.

Step 3: Next, we used an approach similar to PEGASAS31 and
computed the cross-sample Pearson’s correlation coefficient (PCC)
between the PSI value of each exon andpathwayactivity score in Step 1.
For each exon, we selected the significantly positively or negatively
correlated KEGG pathways correcting for 332 tests performed for each
exon based on the Benjamini-Hochberg FDR threshold of 0.05. We call
an exon embryonic positive (EP) if it is significantly correlated with at
least 10% of the embryonic positive pathways vs. at most 5% of the
embryonic negative pathways. Analogous criteria were applied to
define embryonic negative (EN) exons.

The PEGASAS-based approach is superior in detecting the splicing
events relevant to embryonic development of tissues compared to
simply performing differential splicing between pre- and post-natal
stages of development because (i) the sample size of the develop-
mental dataset is insufficient for a robustdifferential inclusion analysis,
(ii) an individual exon’s inclusion can be highly variable within pre- and
post-natal stages, which can confound the identification of embryonic
splicing events using differential analysis, (iii) since the PEGASAS
approach is anchored on robustly identified embryonic positive and
negative pathways, instead of relying only on an individual event’s
temporal dynamics, it is likelymore robust to noise. In Supplementary
note 1, we provide a detailed discussion of relative advantages of
PEGASAS approach compared with the conventional differential
inclusion analysis.

Cancer-specific splicing events
For each exon skipping event identified by SUPPA2, we performed a
tumor-normal comparison of its PSI value to identify the splicing
events which were differentially included in tumors. Owing to the
transcriptomic heterogeneity across tumors, a standard differential
splicing analysis, which assesses the significance of difference in the
median PSI values of cancer and normal samples, will not detect exons
mis-spliced in a small number of tumors, which can nevertheless be
biologically significant61. Therefore, we selected the events whichwere
at least 2 standard deviations away from themean of their distribution
in the corresponding GTEx normal samples in a consistent direction
(i.e., increased or decreased) in at least 15% of the cancer patients.
(Fig. 1a). Correspondingly, such events were termed as frequently
increased or decreased in cancer. We focused only on exon skipping
events as those are better annotated in transcriptional databases and
are easier to interpret functionally.

Comparison of cancer and developmental splicing and func-
tional enrichment analysis
To assess if cancer recapitulates embryonic splicing events, we asses-
sed the significance of overlap between cancer and developmental
splicing events using Fisher’s exact test and adjusted the P-value using
Benjamini-Hochberg’s FDR method. Functional enrichment analysis
was performed using the clusterProfiler library in R and the p-values of

the resulting significant terms were adjusted with Benjamini-Hoch-
berg’s method. For plotting, the resulting GO terms were simplified
based on their semantic similarity using the ‘simplify’ function from
clusterProfiler in R (similarity threshold of 0.7).

Protein domain enrichment in EP and EN exons
We downloaded the transcriptomic coordinates of all the PFAM
domains that were mapped to the reference genome (hg38) from the
prot2hg database (http://www.prot2hg.com)108. Since any given
domain can be incorporated either fully or partially in multiple tran-
scripts, the downloaded file was preprocessed to remove redundancy
of genomic coordinates resulting from the same domain mapping to
multiple transcripts by using bedtools merge109. We then intersected
the preprocessed genomic coordinates of protein domains to the
unique and non-overlapping set of EP and EN exons as well as the rest
of the alternatively spliced skip exons (called background exons) using
bedtools intersect in each tissue. To identify the domains enriched in
EP and EN events, we computed the frequency of occurrence of each
domain in EP, EN, and background exons and performed a Fishers’ test
of enrichment in each tissue. The resulting p-values from the Fishers’
testwere corrected formultiple testingbyusingBenjamini-Hochberg’s
method and the domains with an odds ratio > 1 and corrected p-value
<0.1 were considered enriched among EP or EN exons in each tissue.

Survival analysis
We used clinical data from TCGA to model the overall survival of
cancer patients using the inclusion level (PSI value) of each exon as a
predictor variable and age as a covariate in the cox regression.Weused
the R library “survival” for this analysis and the resulting p-values were
adjusted formultiple testing using Benjamini-Hochberg’smethod. The
distribution of the resulting hazard ratios was compared between
embryonic positive, negative and the rest of the splicing events.

Model for regulation of embryonic splicing
To dissect the potential regulators of embryonic splicing events, we
built upon a commonly used notion that differential expression of
splicing factors could lead to the differential splicing of the exons110.
For this, we identified 442 proteins which have the term ‘splicing’ in
their GO definition from the Amigo database111. We then used a partial
least square regression (PLSR) analysis to model the inclusion of EP
events using the gene expression of splicing factors in the develop-
mental data. PLSR outperforms multiple linear regression when deal-
ing with multicollinearity among the predictor variables or when the
predictor matrix is non-singular112.

For gene expression matrix X of 442 features (SFs) across N
developmental timepoints (n × 442) and response matrix Y of median
EP splicing across n timepoints (n × 1), the PLSR transforms X and Y as
per the following relations:

X=TPT +E ð1Þ

Y=UQT +F ð2Þ

whereT andU are theN× rmatrices of the extracted latent vectors and
P (p × r) andQ (1 × r) are the loadings ofX and Y. E (n × p) and F (1 × p)
are the residuals. In the PLSR algorithm, T and U are constrained to
have a maximum covariance as per following relation:

U =TB+H ð3Þ

whereB (r × r) is a diagonal matrix of regression coefficients andH is a
matrix of residuals.

Splicing factors with positive regression coefficients and a sig-
nificantp-value (p < 0.05 after FDR correction)were considered critical
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regulators of EP events (CSF) PLSR was implemented using ‘pls’
package in R112.

Mutation analysis of splicing factors
To assess the causal role of CSFs in the regulation of EP events, we
obtained level 2 mutation data from TCGA cohorts of brain, liver, and
kidney cancers (https://portal.gdc.cancer.gov/) using ‘maftools’ in R113

and identified the tumorswhich had nonsenseor truncatingmutations
for these factors. For each mutated factor in each cancer type, we
compared the median inclusion level of EP events in the mutant sam-
ples against the background set of samples that were not mutated for
any of the splicing factors. Thus, the factors were classified into
‘increased’ or ‘decreased’ categories depending upon at least 5%
increase or decrease in the median EP inclusion level. To account for
the potential confounding effect of the differential expression of
splicing factors between samples, we identified, for each mutant
sample, a set of 10 non-mutant samples with similar splicing factor
expression. Specifically, for eachmutant sample, we identified 10 non-
mutant samples with the shortest Euclidean distance to the mutant
sample in terms of the gene expression of all splicing factors. For
robustness, we discarded the splicing factors for which the back-
ground set of patients had a high variability (standard deviation > 0.1)
in the median EP splicing across the 10 samples (Supplemen-
tary Fig. 4e).

Transcriptional regulators of splicing factors
To identify the potential transcriptional regulators of critical splicing
factors (Fig. 6a), in each organ independently, we divided the splicing
factors into two classes: namely, a foreground set comprising of the
top 100 critical splicing factors, and a background set comprising the
remaining splicing factors (nCSFs). To assess whether a TF was more
likely to regulate CSFs compared to nCSFs, we used four com-
plementary approaches (Fig. 6a). In the first step, we used the TFEA.-
ChIP library in R, which uses publicly available genome-wide binding
datasets fromChIP-seq experiments55. TFEA.ChIP used a Fisher’s test to
assess if a specific TF’s binding is significantly enriched in the promoter
regions (i.e., within 1 kb upstream of the transcription start site) of the
CSFs relative to nCSFs (step 1 in Fig. 6a). TFs with an odds ratio > 2 and
an FDR of 0.05 were considered putative regulators of CSFs. This first
step was used as a strict filter for a TF to be further considered. To
validate the ChIP-seq-based findings with the gene knockout/knock-
down studies, we used the KnockTF database56, which is a compen-
dium of publicly available genome-wide transcriptional profiling
following the deletion of TFs across multiple cell lines (step 2 in
Fig. 6a). In this step, we obtained all the genes which were marked as
downregulated based on a robust statistical analysis in the KnockTF
database56 following the deletion of a transcription factor and again
assessed if CSFs were enriched as compared to nCSFs among the
downregulated targets using a Fisher’s test. TFs with an FDR of <0.25
and a positive odds ratio in any of the cell lines were considered
putative experimentally derived regulators of CSFs. Furthermore,
because KnockTF has a poor coverage of TFs, we did not use this as a
strict filter and instead used two additional computational approaches
to infer the potential TFs: (i) We built a gene regulatory network for TFs
shortlisted by ChIP-seq using the developmental time course data for
relevant tissues and the ARACNe software57 and assessed if the CSFs
were enriched relative to nCSFs among the in silico derived targets of
eachTFusing aFisher’s test (step3a in Fig. 6a). TFswith anodds ratio>2
and an FDR<0.2 were considered potential in silico derived regulators
of CSFs. (ii) In parallel, we assessed the correlation of ChIP-seq short-
listed factors with CSFs and nCSFs in relevant cancer types (step 3b in
Fig. 6a). The factors, with a correlation difference > 0.2 between CSFs
and nCSFs were considered putative regulators. The ChIP-seq short-
listed factors, which either passed the KnockTF test OR passed both
computational tests, were proposed as regulators of CSFs. In all the

applicable cases, p-valueswere adjusted formultiple comparisonsusing
the Benjamini-Hochberg procedure in R.

Analysis of shRNA data for HepG2 cell line
To investigate the effect of knocking down of CSF on the inclusion
level of EP events, we used an shRNA knockdown data for RNA binding
proteins in HepG2 (a liver cancer) cell line from ENCODE database48.
The dataset consisted of RNA-seq experiments following the knock-
down of 223 RNA binding proteins, eachwith twobiological replicates,
and controls which were shared between different targets. The raw
sequencing reads for the knockdown as well control experiments (26
controls with two replicates each) were downloaded and processed to
quantify transcript/gene expression using Kallisto and exon inclusion
using SUPPA2. Following a similar procedure as before (i.e., EP events
in human tissues), the gene expression and splicing quantification in
the control set of cell lines were used to train a PLSR model and learn
the critical splicing factors of liver EP events in HepG2 cell line. We
considered only those splicing factors in which shRNA knockdown
resulted in at-least 50% reduction in their expression. For each RNA
binding protein considered in this analysis, we calculated the pro-
portion of EP events whose inclusion was consistently decreased
across two biological replicates (ΔPSI < −0.1 after shRNA knockdown
relative to the controls) and plotted the distribution of this propor-
tions in critical and remaining splicing factors in HepG2 cell line.

CNV analysis
For each cancer type we obtained the level 4 CNV data from TCGA,
which contained sample-specific information about the CNV profile of
each gene (1 being CNV amplification, 0 being no CNVs, −1 being CNV
deletion). To assess the CNVs of CSFs in each cancer type, we divided
all samples into three quartiles based on the gene expression of each
CSF. For each group of samples obtained in this way, we calculated the
averageCNVvalue for eachCSF and compared thesevalues for all CSFs
between the quartiles using a Wilcoxon test.

Single cell validation
For single cell validation of prioritized transcription and splicing fac-
tors, we obtained GBM single-cell SMART-seq datasets from 20 adult
GBM tumors114 from the Broad Institute Single Cell Portal (https://
singlecell.broadinstitute.org/single_cell; Accession: SCP393). We also
obtained normal brain single-cell SMART-seq and RNA-seq data and
the annotations of cells frommultiple cortical areasof thehumanbrain
from the Allen Brain atlas (2019 SMART-seq release, https://portal.
brain-map.org/atlases-and-data/rnaseq)115. Oligodendrocytes, astro-
cytes, and oligodendrocyte progenitor cells were used as a normal
reference to compute log-fold changes betweenmalignant and normal
cells. For liver cancer, LIHC single-cell RNA-seq data is 10X data
sourced from a previous study116 and the read count matrices and
annotations were downloaded from the GEO database (GSE125449).
For healthy liver, read count matrices were obtained from the
HumanLiver package117 (https://github.com/BaderLab/HumanLiver).
Hepatocyte clusters (Hep 1−6) and cholangiocytes were used as a
normal reference to compute log-fold changes betweenmalignant and
normal cells.

The activity of CSFs at the single-cell level was scored as a gene set
using AUCell118, and the resulting activity scores were z-scored across
all cells separately in each tissue. We used the batch ID of the samples
as a covariate in this analysis to account for sequencingdifferences due
to differing batches119. In each case, the cell type annotations and their
uniform manifold approximation and projection (UMAP) coordinates
were also downloaded from the respective source indicate above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The public RNA-seq datasets for human cancers were generated by
TCGA consortium (https://www.cancer.gov/tcga) and are publicly
available from the ‘toilhub’ of UCSC-Xena browser100 (UCSC-Xena-
TCGA). The public RNA-seq datasets for healthy human tissues were
generated by GTEx consortium and publicly available from the ‘toil-
hub’ of the UCSC-Xena browser100 (UCSC-Xena-GTEx). The public
mutation calls and copy number amplifications from whole exome
sequencing data of human cancers are publicly available from TCGA
genomics data commons portal (https://portal.gdc.cancer.gov/)120.
The public RNA-seq datasets spanning multiple stages during human
organogenesis are publicly available and downloaded from array
express (E-MTAB-6814)29. The public clinical and survival data of can-
cer patients is publicly available and downloaded from Pan-Cancer
Atlas initiative (TCGA-clinical)121. The public mapping of PFAM
domains to hg38 assembly was performed by a previous study and the
mapping coordinates are publicly available to download from the
prot2hg database (http://www.prot2hg.com)108. The public data for
frequentlymutated splicing factorswith a significant evidence for their
cancer driver gene activity is publicly available and downloaded from
Table S1 of Seiler et al.54. The public RNA-seq datasets for shRNA
knockdown of splicing factors and corresponding controls for HepG2
cell line were downloaded from ENCODE database (ENCODE-shRNA-
HepG2)48. The public data for doubling time, RNA-seq, and genome-
wide dependency score for cancer cell lines are publicly available and
downloaded from the DepMap portal release 22Q2 (DepMaP)122. The
public single-cell RNA-seq data for glioblastoma patients is publicly
available and downloaded from the Single Cell Portal of the Broad
Institute under the accession code SCP393 (sc-GBM)114. The public
single-cell RNA-seq data for healthy brain samples is publicly available
and downloaded from Allen Brain Atlas (sc-Brain)115. The public single-
cell RNA-seq data for liver cancer is publicly available and downloaded
from GEO database under the accession code GSE125449 (sc-LIHC)116.
Single-cell RNA-seq data for healthy liver is publicly available and
imported with HumanLiver package in R (sc-Liver)117. The public data
for differentially expressed genes following the deletion of TFs across
multiple cell lines is publicly available and downloaded from KnockTF
database (KnockTF)56. The public ChIP-seq datasets for the genome-
wide binding of TFs acrossmultiplemodel systems is publicly available
and downloaded from the GitHub repository of the TFEA.ChIP library
in R55 (TFEA.ChIP). The public data for human phenotype ontology
terms is publicly available and downloaded from The Jackson labora-
tory (HPO)123. Gene and transcript coordinates for hg38 assembly were
downloaded from Gencode (Gencode V23)124. The remaining data
generated in this study are provided with this paper as supplementary
files and source data file. Source data are provided with this paper.

Code availability
All the codes used in collection, processing and analysis of datasets are
available are deposited atGitHub (https://github.com/hannenhalli-lab/
AltSplDevCancer/) and the corresponding DOI is as follows: https://
doi.org/10.5281/zenodo.7325464125.
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