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Filoviruses, including Ebolavirus, pose anincreasing threat to the public health.
Although two therapeutic monoclonal antibodies have been approved to treat the Ebola
virus disease'?, there are no approved broadly reactive drugs to control diverse filovirus
infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35
(VP35), which constitute the basic functional unit responsible for virus genome RNA
synthesis®. Owing toits conservation, the L-VP35 polymerase complex is a promising
target for broadly reactive antiviral drugs. Here we determined the structure of Ebola
virus L proteinin complex with tetrameric VP35 using cryo-electron microscopy (state1).
Structural analysis revealed that Ebola virus L possesses a filovirus-specificinsertion
element that is essential for RNA synthesis, and that VP35 interacts extensively with the
N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the
complex structureinasecond conformation with the unambiguous priming loop and
supporting helix away from polymerase active site (state 2). Moreover, we demonstrated
that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase
inanenzymatic assay. The structure of the L-VP35-suramin complex reveals that
suramin canbind at the highly conserved NTP entry channel to prevent substrates from
enteringthe active site. These findings reveal the mechanism of Ebola virus replication

and may guide the development of more powerful anti-filovirus drugs.

Infections with filoviruses such as Ebolavirus (EBOV) and Marburg virus
cancause severe clinical symptoms, including haemorrhagic fever and
multiorgan failure*. Before December 2013, 35 outbreaks of filovirus
disease had beenrecorded in remote African regions with infrequent
spillover from animals to humans®. Since December 2013, atypically
extensive ebolavirus disease outbreaks, including an unprecedented
outbreak from 2013 to 2016 in West African countries, an outbreak
from 2018 to the present in the Democratic Republic of the Congo,
and amorerecentbrief outbreakin Guinea, have a profoundimpact on
public health systems. At least 14,000 fatalities from ebolavirus disease
were reported between December 2013 and August 2020 (ref. ®). The
resurgence of EBOV in 2021 in Guinea suggests a persistent infection
with reduced replication or a period of latency in humans’. Although
filoviruses wereinitially thought to occur exclusively in Africa, recent
studies have revealed that they are more widely distributed, including
in Asiaand Europe®’. Moreover, previously unknown filovirus species
have been reported', and the genetic diversity of filoviruses and other
potential zoonotic viruses may be greater than previously recognized™.
This presents agreat challenge for the development of virus-targeting
prophylactic and therapeutic countermeasures.

Filoviruses, including ebolavirus, are non-segmented negative-sense
RNA viruses (nsNSV) with seven genes, and belong to the order
Mononegavirales®. The viral RNA genome is encapsidated by the

nucleoprotein (NP) and is further associated with the polymerase
complex consisting of the large (L) protein, the cofactor viral protein
35 (VP35) and the transcription activator VP30, forming the ribonu-
cleoprotein (RNP) complex™. Invirions, the RNP complexinteracts with
the nucleocapsid-associated VP24, and is surrounded by the matrix
protein VP40, which drives the morphogenesis and budding of virus
particles™. Finally, the matrix layer is covered by the host cell-derived
envelope inwhich the viral glycoprotein GP is embedded™. Filoviruses
follow the typicallife cycle of the cytoplasmically replicating nsNSVs,
including multiple key processes such as cell entry, genome replication
and transcription, morphogenesis and budding**.

Inrecentyears, antiviral therapeutic approaches have targeted the
different processes of ebolaviruslife cycle. The most developed area of
antiviral developmentisfocused onthe entry process, including mono-
clonal antibodies (ZMapp, mAb114 and REGN-EB3) and small molecule
inhibitors**, In a randomized clinical trial, the overall mortality
rates among patients who received REGN-EB3 and mAb114 were 33.5%
and 35.1%, respectively, much lower than that for patients treated with
ZMapp (49.7%)'8. Moreover, the viral RNA synthesis machinery hasbeen
apromisingtarget for the design of broadly reactive drugs against other
viral diseases™?°. Nucleoside analogue drugs (remdesivir, favipiravir
and BCX4430) and smallinterfering RNA (siRNA)-based degradation of
viralmRNAs (TKM-Ebola) targeting the viral RNA synthesis machinery
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have been designed and tested to combat ebolavirus infection®2*,
However, these small molecule inhibitors have displayed poor clinical
outcomes. The mortality of remdesivir-administered patients was 53.1%
inarandomized clinical trial, much higher thanthat of antibody-treated
groups®.Inaddition, the nucleoside analogue drug favipiravir showed
significant effectiveness in protecting mice from lethal EBOV chal-
lenge, but provided low protection in a clinical trial>>?°. The mortality
of patients receiving TKM-Ebolawas 79%, and the drug did notimprove
survival compared with historic mortality”. Although REGN-EB3 and
mAbl14 have beenapproved by the US Food and Drug Administration,
these antibodies only provide protection against Zaire ebolavirus.
Therefore, there is an urgent demand for broadly reactive drugs to con-
trolinfection with diverse filoviruses. However, the current knowledge
gap in the understanding of the filovirus RNA synthesis machinery is
hampering the development of such drugs.

The filovirus RNP complex is responsible for viral RNA synthe-
sis, and the L-VP35 complex is the competent core unit for efficient
RNA-dependent RNA polymerization from the viral RNP template®.
The structures of L polymerase in complex with the cofactor phos-
phoprotein (P) from several mononegaviruses, including vesicular
stomatitis virus (VSV), rabies virus, human metapneumovirus (HMPV),
human respiratory syncytial virus (HRSV) and human parainfluenza
virus (HPIV) have revealed two binding modes: P interacting with the
N-terminal region of L polymerase or with the C-terminal region of L
polymerase®® 2 Pserves as anindispensable cofactor for RNA synthe-
sis, and it can tether L to the RNP complex and act as a chaperone to
prevent the non-specific aggregation of nascent N protein with host
RNA, preserving monomeric RNA-free N protein for RNP assembly
among Mononegavirales®. The respiratory syncytial virus P protein
also interacts with M2-1** and the cellular phosphatase PP1* to coor-
dinate viral transcription. Inaddition to its P-like chaperone function,
EBOV VP35 binds to double stranded RNA (dsRNA) and is crucial for
host immune evasion®®. However, little is known about the structural
basis of the filovirus L-VP35 complex, which precludes the molecular
understanding of filovirus RNA synthesis.

Overall structure of EBOV polymerase

We used the baculovirus expression system to co-express the EBOV L
polymerase and VP35 proteins and obtained soluble complex protein
that was suitable for structural and functional studies. We analysed
the purified protein complex using size-exclusion chromatography,
and SDS-PAGE and westernblotting profiles showed that the L protein
was easily degraded into two bands, with molecular weights of about
180 kDa and 150 kDa (Extended Data Fig. 1). A primer-extension assay
using 11-mer RNA template and 4-mer RNA primer confirmed that the
L-VP35complex possessed RNA-dependent RNA polymerization activ-
ity. The RNA products wereinhomogeneous with asmall percentage of
full-length product, and the majority were abortive products probably
caused by early termination (Extended Data Fig. 1).

Using cryo-electron microscopy (cryo-EM), we determined struc-
tures of the L-VP35 complex and the VP35 oligomerization domain
toresolutions of 3.0 A and 3.4 A, respectively (we refer to this as the
state1conformation; Supplementary Figs.1and 2 and Supplementary
Table1). The final 3D reconstruction maps enabled us to build atomic
models for residues 8-1383 of L and for the VP35 tetramer with differ-
ent lengths (Fig. 1and Supplementary Fig. 3). Although the L protein
sequenceidentity isonly about 25.5%, the overall ‘spoon-like’ structure
of EBOV L-VP35is similar to that of the HPIV5 L-P complex (Extended
DataFig.2). The visible region of L polymerase contains an N-terminal
domain (NTD), an RNA-dependent RNA polymerase (RdARp) domain
and aGDP polyribonucleotidyltransferase (PRNTase) domain (Fig.1).
The RdRp domain of EBOV L folds into the canonical right-handed
fingers—palm-thumb architecture observed in many RNA virus poly-
merase structures, containing six catalytic motifs (A-F) (Fig. 2a,b). The

superposition of EBOV Land VSV L structures shows aroot meansquare
deviation (r.m.s.d.) of 4.2 A based on superimposition of Ca residues,
illustrating the structural conservation of L polymerases during the
evolution of Mononegavirales (Fig. 2c) and suggesting that RNA follows
similar paths in nsNSV polymerases (Extended Data Fig. 3). However,
we observed a filovirus-specific structural element consisting of a
loop, which was absent in other mononegaviruses (Fig. 2d), owing to
aninsertion of -30residuesinthe NTD of L polymerase, roughly span-
ning residues 190 to 225 (Fig. 2e). Deletion of the insertion element
abolishes the transcription activity of EBOV RNP (Extended DataFig.4),
suggesting that thisloop is essential for RNA synthesis. Asin VSVL, the
PRNTase domain of EBOV L has alarge interface withthe RdARp domain
and is responsible for the 5’ capping of nascent viral MRNAs**. The
structural organization of PRNTase domain highly resembles those
of L proteins from other mononegaviruses and is supposed to have
conserved sequence motifs (A’-E’). We used AlphaFold2 to predict the
structure of the L protein and modelled the full-length EBOV L structure
with bound VP35 tetramer (Extended DataFig. 5). The putative model
could be overlaid onto our structure, and showed the presence of a
long loop (residues 1652-1761) between the connector domain and
the methyltransferase domain, which may partially explain why the
purified EBOV L protein tends to degrade.

Previous structures of L polymerases from VSV and pneumoviruses
(HRSV and HMPV) have revealed two different conformations of the
catalyticchamber: theinitiation state observedin VSV L polymerase, in
whichthe primingloop from the PRNTase domain and the supporting
helix from the RdARp domain largely occlude the central RNA-binding
cavity*’; and a possible elongation state observed in HRSVand HMPV L
polymerases, inwhichthe primingloop retracts completely intoa cavity
inthe PRNTase domain and the supporting helixis not visible, leaving
ample space for the dsRNA intermediate duplex®**°. In our structure of
the free L-VP35 complex, we found that the priming loop (also referred
toas motif B’in the PRNTase domain), motif D’ of the PRNTase domain
and the partial supporting helix are disordered, suggesting that these
structural elements are flexible (Fig. 3a,b).

To further explore the elongation conformation of the L-VP35
complex, we incubated the free L-VP35 complex with template and
primer RNAs in an enzyme reaction buffer and determined the com-
plex structure to a resolution of 3.4 A (we refer to this as the state 2
conformation; Supplementary Fig. 4). Although we do not observe
clear density for the RNA in this L-VP35 complex structure, we were
able to trace the complete priming loop (residues 1196-1216) and the
supporting helix (residues from Ser610 to Thr623 are invisible in state
1map) (Fig.3a-d). The priming loop retracts completely into a cavity
ofthe PRNTase domain, as seenin HRSV and HMPV L-P complex struc-
tures®*° (Extended Data Fig. 6). The priming loop further stabilizes
motif D’ (also referred to as the His-Arg (HR) motif), which consists
oftwo catalyticresidues—H1269 and R1270—critical for cap formation
(Fig.3a,band Extended DataFig. 6). This makesit possible for the flip-
ping priming loop to approach the active site of the PRNTase domain,
forming acompact conformation favourable for the capping function.
Thelocation of the supporting helix inthe VSV L structure would clash
with template-product dsRNA, indicating a necessary conformational
change of this element during RNA elongation (Extended Data Fig. 7).
In our EBOV L-VP35 structure, the supporting helix leaves from the
central RNA-binding cavity and forms several hydrogen bonds with
motif C tostabilize this conformation (Fig. 3d and Extended DataFig. 7).

Interactions betweenL and VP35

The EBOV VP35 oligomerization domain can assemble into trimer or
tetramer® structures (Extended Data Fig. 8). Our L-VP35 complex
structure shows that tetrameric EBOV VP35 binds to the L polymerase
(Fig.1and Extended Data Fig. 9a). Large variations in conformation
were observedin each of the four VP35 monomers (VP35a, VP35b, VP35¢
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Fig.1| The overallstructure of the EBOV L-VP35 complex. a, Schematic
diagram of the domain architecture of EBOV Land VP35. L proteincanbe
dividedinto five regions. Structurally modelled domains are shownin colour:
NTD, orange; fingers subdomain, blue; palm subdomain, red; thumb
subdomain, green; PRNTase, cyan. Thelinkers, connector domain (CD),
methyltransferase domain (MTase) and C-terminal domain (CTD) of L are not

and VP35d) (Extended Data Fig. 9b). Clear densities enabled the trac-
ing of VP35aresidues 82-149, which does not interact with L, as well
as VP35b 80-146, VP35¢ 81-179 and VP35d 81-340, which do interact
with L (Fig. 1, Extended Data Fig. 9b and Supplementary Table 3). The
oligomerization region (residues 83-145) of VP35 forms a coiled-coil
structure of four helices to stabilize the tetramer, whichis further sta-
bilized by antiparallel B-sheets formed by VP35c residues 145-148 and
VP35d residues 174-177, and hydrogen bonds formed between VP35¢
Argl51and VP35d GIn168 and Pro169, and between VP35c Glu160 and
VP35d Argl51 (Extended Data Fig. 9c). The VP35-Linteractionis defined
mainly by hydrogen bonds, electrostaticinteractions and van der Waals
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modelledinthe structure,and are shownin white with dashed outline. The
solved regions of the VP35 protomers vary inlength and shown in different
colours. The NTD of VP35 was not observedinall protomers owingtoits
flexibility. b,c, The cryo-EM density map (b) and atomic model (c) of the EBOV
L-VP35 complex with coloured domains as depicted ina. The terminal residue
numbers of the VP35 protomers areindicated.

contacts, contributed minimally by VP35b and largely by VP35c and
VP35d (Fig. 4, Extended Data Fig.10 and Supplementary Table 3). Resi-
dues Thr127 and Ser130 of VP35b form two hydrogen bonds with the
Asn434 from the fingers subdomain of L, and VP35b Arg133 forms a
hydrogenbond with Asp432 of L (Fig.4b and Supplementary Table 3).
van der Waals contacts are also formed between Thr127 and Ser130
of VP35b and Asn434 of L (Supplementary Table 3). About 30 addi-
tional residues are observed after the oligomerization regionin VP35c
compared with VP35aand VP35b, which form a 3-strand that interacts
with an antiparallel 3-strand in VP35d and a a-helices connected by
the loops (Extended Data Fig. 9b,c). The major interactions between
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Fig.2|Structure ofthe EBOVLRdRp domain.a, The RdRp domainisshown
ascartoon, withthe fingers subdomaininblue, the palmsubdomaininred,
the thumb subdomainingreen, and the remaining NTD in orange. The active
siteis highlighted with ared asterisk. The partial supporting helixis observed
inthe fingers subdomain. b, The same view asin a, with catalytic motifs
highlighted. ¢, The superposition of the RdARp domains of the EBOV (coloured

VP35c and L contain five hydrogen bonds and a number of van der
Waals contacts. Among them, residues Met147 and Thr149 of VP35c¢
interact with the main chain of Leu399 and Lys397 from the fingers
subdomain through two hydrogen bonds, respectively (Fig. 4c and
Supplementary Table 3). Moreover, the side chain of Thr153 of VP35¢c
forms hydrogen bond with Glu643 of L to further stabilize the interac-
tion (Fig. 4c and Supplementary Table 3). For VP35d, all the regions
(residues146-340) after the oligomerization domain were traced, con-
sisting of an a-helix, a B-strand, two consecutive a-helices and the rigid
C-terminal RNA-binding (or interferon-inhibitory) domain (RBD/IID)

by subdomainsasina)and VSV (grey) (Protein DataBank (PDB) ID: 5A22)

L proteins highlights the differenceinthe NTD. d, Close-up view of the specific
insertionregion of the EBOVLRdRp domain. e, Sequence alignment of the
above specificinsertion region spanning residues 190 to 225. The sequenceis
uniqueto filoviruses compared with other nsNSVs. MARV, Marburg virus;
LLOV, Lloviu cuevavirus; RABV, rabies virus; RSV, respiratory syncytial virus.

which caninhibit induction of type I a- or B-interferon by sequester-
ing dsRNA byproducts of viral replication and by interacting with the
members of innate receptor pathway>*. VP35d contacts residues from
the fingers subdomain, palm subdomain and NTD of L polymerase
(Fig. 4, Extended Data Fig.10 and Supplementary Table 3). The region
between the oligomerization domain and the C-terminal RBD/IID of
VP35d forms alongloop structure that lies on top of the hole through
which NTPs enter the active site chamber (Fig. 4d and Extended Data
Figs.3 and 10). This long loop is further stabilized by three hydrogen
bonds formed by Leu209, Glu211and Gly215 of VP35d interacting with
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Fig.3|Structural comparison of EBOV L-VP35 complexintwo states.
a-c,Overlay of EBOV L-VP35 complex structuresinstatelandstate2.a, The
two structures could be superimposed with slight differences. For the L-VP35
complexinstatel, the motif B’ (also referred to as the primingloop) and D’
ofthe PRNTase domain, and the partial supporting helix of RARp could not be
modelled owingto their flexibilities; however, these regions are more stable
and the main chain canbe traced instate 2. b, Close-up view of the comparison

Lys778 from the palm subdomain and Arg315 and GIn322 from the
NTD, respectively. The C-terminal RBD/IID of VP35d contactsthe NTD
viatwo a-helices and leavesits positively charged RNA-binding cavity
exposed to the solvent (Figs. 1and 4a).

Amongthereported L-P complexstructures, the EBOV L-VP35struc-
ture most resembles the HPIV5 L-P complex. However, the resolution
(4.3 A) of the HPIV5 L-P structure is too low to accurately determine
binding sites between L and P protein. Therefore, we analyse the con-
servation of these L protein recognition sites on the basis of the EBOV
L-VP35and HRSV L-P complex structures. Overlaying both structures,
we find that the binding sites between EBOV L and VP35 are similar
to those of HRSV L and P, involving the fingers, palm and NTD of
L (Extended Data Fig.10b). However, the critical residues contributing
to the main interactions vary among the different nsNSV polymerase
complexes (Extended Data Fig.10c).
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of motifs B’and D’, and the ends of unbuilt residues of motif B’ (magenta) and
motif D’ (blue) areindicated by arrows related to the region outlinedinaas
indicated. ¢, Close-up view comparing the supporting helix and the ends of
unmodelled residues of the supporting helix indicated by arrows, ascircled ina.
d, Instate 2, the supporting helix flips outwards and moves away from the
active site of RdRp, and three key residues of motif Cin the RdARp domain form
hydrogen bonds with the supporting helix to stabilize this conformation.

Inhibition of EBOV polymerase by suramin

Suraminisapotentinhibitor of Chikungunyavirusand EBOV cellentry, but
itsmechanism of action remains largely unknown®. Suramin hasalsobeen
reported totarget the viral polymerases of norovirus and SARS-CoV-2404,
Here we show that suramin is also a potent inhibitor of the EBOV L-VP35
polymerase complex. Addition of 32 tM suramin completely abolished
the polymerizationactivity of the EBOV L-VP35 complexinaninvitroenzy-
matic assay, with a half-maximal inhibition concentration (ICs,) of about
11 uM (Fig. 5a and Extended Data Fig. 11b). Furthermore, in a cell-based
assay using a stable EBOV replicon cell line, suramin potently inhibited
EBOV replication, with a half-maximal effective concentration (ECs,) of
about 0.4 puM (Fig. 5b). The concentration of suramin required toreduce
cell viability by 50% (CCs,) is over 200 pM (Extended Data Fig. 11c), indi-
catingitsrelatively low cytotoxicity and high selectivity index (SI>500).



Fig.4|Theinteractionbetween EBOV Land VP35. a, The overallstructure of
the L-VP35complexincartoonview. The L proteinis coloured by subdomains
asindicated. The VP35 protomers are shown in different colours. The
interactioninterfaces between EBOV L and VP35 canbedistributed into four

To uncover the structural basis for suramin inhibition of EBOV RNA
polymerase, we determined the cryo-EM structure of the EBOV L-VP35-
suramin complexat 3.3 A resolution (Supplementary Fig. 5and Supple-
mentary Table 2). The overall structure of the L-VP35-suramin complex
resembles that of the apo L-VP35 complex, but residues 1,000-1,400
could notbe modelled owing to the weak density in thisregion, indicat-
ing that suramin binding may make the PRNTase domain more flexible.
Onthe basis of the clear density, we built an atomic model of the head
half and ring D’ of suramin, spanning the putative NTP entry channel
inthe RdARp domain (Fig. 5c and Supplementary Fig. 5).

The chemical structure of suramin (C5;H,oN0,5S) is a symmetric
polysulfonated naphthylurea, whichincludes four benzene rings, two
naphthalenes and six sulfonic acid groups with a urea linker at the
centre (Extended Data Fig. 11a). In the electron microscopy density
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mainregions, labelled 1,11, 1lland IV.b-e, Close-up views of atomic interactions
betweenLand VP35inregionsI(b), Il (c), 11l (d) and IV (e). Key residues are
shownassticks. Hydrogenbonds arerepresented by yellow dashed lines.

map, we could clearly see the head half of the suramin molecule occlud-
ing the NTP entry channel (Fig. 5¢), and the key interactions include
hydrogen bonds, electrostatic and hydrophobicinteractions with con-
served NTD and RdRp residues. The sulfonate at position 3 forms asalt
bridge withthe side chain of Lys392 and ahydrogenbond with the side
chain of His392 from the fingers subdomain (Fig. 5d). The sulfonate
atposition 5forms asaltbridge with the side chain of Lys293 from the
NTD and a hydrogen bond with the main chain of Val559 from the fin-
gers subdomain (Fig. 5e), whereas the sulfonate at position 1 has little
interaction with the polymerase. A hydrophobic residue (Phe793) in
palm subdomain undergoes substantial conformational change, and
together with Phe319 and Met323 provides a stable hydrophobic cav-
ity toaccommodate benzene ring D of suramin, further tethering the
suramininthe NTP entry channel (Fig. 5f). For the tail half of suramin,
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Fig.5|Mechanism of suramininhibition of EBOV L-VP35. a, Suramininhibits
thereplicationactivity of the EBOV L-VP35 complex inanenzymatic assay,
withanICs,value 0of11.16 M. b, Suramin inhibits EBOV RNP activity in
EBOv-GLuc-Hygrepliconcellswithan EC,, value of 0.4 pM. Dataina,bare
mean = s.d. of three or fourindependent experiments. ¢, Overall structure

of the L-VP35-suramin complex. The L-VP35complexisshownin cartoon
representation with the same colours asin Fig.4.Suraminis shownasastick

the densityisonly visible at avery low threshold, but we can model the
full suramin molecule on the basis of the density and stereochemistry
of suramin; the tail half of suramin occupies the space where the nas-
cent RNA would go, where the surrounding basic residues may form
electrostaticinteractions with the negatively charged sulfonate groups
of suramin (Extended Data Fig. 11d-g).

Discussion

The high-resolution structures of the EBOV polymerase complex pre-
sented here provide first structural characterization of EBOV L protein
in complex with VP35. VP35 is functionally analogous to P proteins of
other mononegaviruses, which not only acts as a cofactor of L protein
butalso facilitates nucleocapsid formation by binding the monomeric
NP to prevent premature and non-specific assembly***, Inaddition, the
binding of VP35to L protein can prevent the self-aggregation of L protein
caused by hydrophobicinteractions, as there are several hydrophobic
patchesinthe VP35-binding regions (Supplementary Table 3). Moreover,
VP35 and VP24 are required for the proper condensation of filovirus
nucleocapsid, which acts as a template for genome transcription and
replication**. Structurally, VP35 is composed of anNTD, an oligomeriza-
tion domainand C-terminal domain connecting withalinker. The NTD is
responsible for interacting with free NP and the LC8 subunit of cellular
dynein, whichis also involved in viral RNA synthesis*****5, however, this
region is not visible in our cryo-EM map, indicating that it is flexible
and may adopt distinct conformations to bind different partners. In
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addition to functioning as an interferon antagonist®, the C-terminal
domain canalsointeract with the NP protein*®, and the L-VP35 complex
structure presented herereveals that the three free C-terminal domains
may function as anchors to underpin the L protein moving along the
nucleocapsid during genome transcription and replication.

Mononegavirus L protein contains all the domains required for RNA
synthesis, capping and methylation. The switch frominitiationto elon-
gation involves significant conformational changes of key elements,
including the supporting helix and priming loop. Previous studies have
revealed the different conformations of the priming loop?*2°*2%, but
could not determine the conformation of the supporting helix in the
non-initiation state. The outward state of the supporting helix that we
captured in this study contributes towards the understanding of the
conformational dynamics during the catalytic cycle. A filovirus-specific
insertion element was observed in the NTD of EBOV L, which is essen-
tial for its transcription activity, as revealed by the replicon assay.
Aprevious study reported that the NTD of the VSV L protein s essential
for viral genome transcription®’. Thus, we deduce that the NTD of the
EBOV L protein might be involved in genome transcription. Notably,
compared with other nsNSVs, filoviruses, including EBOV, have aunique
cofactor protein VP30, whichis crucial for transcriptioninitiation; we
therefore suspect that the insertion element in NTD may evolve with
VP30 to regulate the transcription process.

Thereoccurrence of EBOVin2018-2020in the Democratic Republic
ofthe Congo and resurgence of EBOVin 2021in Guineais evidence of the
need for economical and effective drugs to treat the disease. Suraminis



amultifunctional drug with inhibition activity against parasites, viruses
and cancers*®. The L-VP35-suramin structure indicates that suramin can
bind tothe RdRp domain, blocking the NTP entry channel and occupy-
ing the space that the nascent RNA chain would occupy, thus hindering
polymerizationactivity (Fig.5and Extended DataFig.11). Previous stud-
ies have shown that the suramin-binding sites in norovirus polymerase
overlap the proposed NTPentry channel*,and in SARS-CoV-2RdRp, they
occupy the chamber where the RNA template and primer go* (Extended
DataFig.12).Inbothof the above structures, only half of a suramin mol-
eculewas seen, owing to the other half moiety remaining unrestricted by
protein. In this study, we could trace the whole suramin molecule, with
clear density at the head moiety and relatively weak density at the tail
part, which could be stabilized by the surrounding positively charged
residues. Our result suggests that the NTP entry channel would be an
attractive target for the development of antiviral drugs.

Although suramin has been used to treat African sleeping sickness
forabout100 years, we noted that the relatively large molecular weight
and multiple negative charges could be shortcomings for clinical use.
In addition, suramin also binds to cellular DNA polymerase, primase,
helicases and transcription factors**=°, which might lead to off-target
effects. The details of the interaction between suramin and L protein
described here could guide optimization of the molecule toincrease its
affinity and specificity, such as by enhancing the hydrophobicinteraction
betweenring D of suramin and the hydrophobicresidues of L protein, or
reducing the negative charge by deleting the sulfonate at position1, which
provided fewinteractions.Insum, the findings for suramin can be used as
aproof of principle for the development of a broad-spectrum inhibitor.

Insummary, we determine the structure of EBOV L proteinin complex
with tetrameric VP35 and capture a previously missing structural snapshot
of mononegavirus polymeraseinthe non-initiation state, withasupport-
ing helix and priming loop getting away from the active site. Of note, we
demonstrate that suramin could inhibit EBOVL-VP35activity and elucidate
thestructural basis of suraminbinding to RdRp, suggesting the feasibility
of developing non-nucleoside antiviral drugs to treat filovirus infection.
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Methods

Protein expression and purification

The coding sequences of EBOV L (GenBank: AHX24663.1) and VP35
(GenBank: AHX24647.1) were synthesized and codon-optimized for
Bac-to-Bac expression system using pFastBac Dual transfer vector. The
sequences of EBOV L and VP35 were fused with an N-terminal 2xStrep
tag and a C-terminal His tag, respectively. The purification process
is performed as previously reported®. Insect SF9 cells (11496015;
Invitrogen) and High Five cells (B85502; Invitrogen) were used to pre-
pare the recombinant baculoviruses and express EBOV L-VP35 com-
plex protein, respectively. Both cell lines are routinely maintained in
ourlaband tested negative for mycoplasma contamination. The High
Five cells were harvested by centrifugation (3,000 rpm, 4 °C, 10 min)
at 48 h post-infection and lysed by sonication in buffer A containing
25mMHEPES, pH7.8,1M NaCl, 5% glycerol,1mM Tris(2-carboxyethyl)
phosphine (TCEP), 0.01% Tween 20, 4 mM MgCl, and 1 mM Phenyl-
methanesulfonyl fluoride (PMSF). Cell debris were discarded using
super-centrifugation (30,000 rpm, 4 °C,1h) and 0.22 umfilter to collect
supernatant. The protein solution was loaded into a HisTrap column
(GE Healthcare, 5 ml) with equilibrium of buffer B containing 25 mM
HEPES, pH7.8,500 mM NacCl, 5% glycerol,1 mM TCEP,4 mM MgCl,, and
thebound protein was eluted using 300 mM imidazole supplemented
inbuffer B. The eluted fractions were pooled and subjected to further
purification using StrepTrap column (GE Healthcare, 5 ml). The EBOV
L-VP35complex protein was eluted using 2.5 mM D-desthiobiotin dis-
solvedinbuffer B. The protein was concentrated with a100 kDa-cutoff
Millipore Ultra centrifugal filter,and thenloaded onto a size-exclusion
chromatography (GE Healthcare, Superdex 200) with buffer B. The
purified L-VP35 complex protein was confirmed by westernblot using
mouse monoclonal antibody against Strep tag (Easybio BE2038, dilu-
tion 1:3,000). The final products were collected and concentrated to
~5mg ml™, which was calculated by Nanodrop at 280 nm, and finally
stored at —80 °C until to use.

RdRp enzymatic activity assay and its inhibition by suramin

To determine whether the purified L-VP35 protein s biologically active,
we performed the primer-extension assay>>*. A mixture of 1.5 pM
L-VP35 complex, 1 uM template RNA (5’-UUUGUUCGCGU-3’) and
200 pM primer RNA (5’-ACGC-3’) was added into a reaction buffer
containing 20 mM Tris-HCI, pH 8.0, 20 mM NacCl, 4 mM MgCl,, 1mM
TCEP, 0.01% Tween 20,1 mM CTP/UTP/ATP and 0.12 pCi pl™ [a-*?P]
GTPat30 °Cfor1h. Thereaction system was quenched with addition
of formamide and boiled at 100 °C for 10 min. The RNA products were
separated by 25% polyacrylamide gels containing7 M ureain 0.5x TBE
buffer.Images were taken by exposing the gels ona storage phosphor
screen and read with a Typhoon scanner (GE Healthcare). For assays
with inhibition by suramin, the setup was similar to the above, except
that the suramin was added at final concentrations of 1, 2, 4, 8,32 and
64 pM. The intensity of each band was quantified with ImageJ software.

Mini-replicon assay

Plasmids expressing EBOV RNP (pCAGGS-L or pCAGGS-L 1962,5GS
(inwhich residues 196-225 were replaced with GS), pCAGGS-VP35,
pCAGGS-VP30 and pCAGGS-NP) and T7 polymerase (pCAGGS-T7),
and a reporter plasmid encoded GFP flanked by T7 promoter, 5’- and
3’-terminal untranslated region sequences, were co-transfected into
HEK293T cells using Lipofectamine 3000 (Invitrogen)**. EBOV RNP
activity was measured using the expression level of GFP calculated by
CellVoyager CQl (Yokogawa) after 72 h. The expressions of VP35, NP
and VP30 were detected using polyclonal antibodies (dilution1:1,000)
which were derived by immunizing rabbits (3-4 months old) with puri-
fied VP35, NP and VP30 proteins, respectively. Tubulin was used as
aloading control and detected using mouse anti-tubulin (Easybio,
BEO0O03]1, dilution 1:3,000). All rabbit experiments were performed

according to the procedures approved by the Institute of Microbi-
ology, Chinese Academy of Sciences and complied with all relevant
ethical laws. Due to lack of antibody against L protein, the mRNA
transcription levels of L (both wild type and L ;46 1,5 GS mutant) were
measured by quantitative real-time PCR (RT-qPCR). Total RNA was
extracted using Cell Total RNA Isolation Kit (Foregene) and the con-
centration of RNA was measured by Nanodrop at 260 nm. About 5 pg
total RNA was treated by Hifair Il 1st Strand cDNA Synthesis SuperMix
for quantitative PCR (qPCR) (purchased from YEASEN) to generate
cDNA. RT-qPCRwas performed using Hieff UNICON gqPCR SYBR Green
Master Mix (purchased from YEASEN) on the Bio-Rad CFX96 real-time
PCR system. RT-qPCR primers for L mRNA were as follows: forward
primer, 5-GGACGAATCACAAAACTAGTCAATG-3’; reverse primer,
5’-CGGAAATAAACTCAGAAGCCCTG-3’.L mRNA copy numbers were
calculated based on a standard curve generated with purified PCR
products.

Cell-based assay for antiviral activity of suramin

Cell-based assay for inhibitory activity of suramin against EBOV poly-
merase was performed on the stable EBOV-GLuc-Hyg replicon cell line®.
The cells were cultured overnightin Dulbecco’s modified Eagle medium
(DMEM, Gibco) containing 100 pg mli™ hygromycinand 10% fetal bovine
serum (FBS, Gibco) at 37 °C, 5% CO,. The medium was replaced with
FBS-free substrate before the addition of drugs. The cells were incu-
bated with different concentrations of suramin and further cultured
in 96-well plate. After 72 h incubation, a 30 pl volume of supernatant
from each well was pipetted after centrifugation and then added to
anew 96-well white plate and mixed with same volume of Gluc assay
solution (Gaussia Luciferase Assay Kit, GeneCopoeia) immediately. The
values of luminescence were measured by GImax Reader (Promega).

Cytotoxicity assay

The cytotoxicity of suramin against EBOV-Gluc-Hyg replicon cells were
measured by CCK8 reagent (MCE). Briefly, the drug-treated cells were
washed twice with PBS and mixed with reaction solution containing
CCKS8. After incubation at 37 °C for 1.5 h, the A5, values were read by
microplate reader (Thermo Fisher Scientific).

Statistical analysis

ICs, EC5oand CCy values were represented asmean + s.d. from at least
three independent experiments. All values were determined by the
nonlinear regression analysis using GraphPad Prism software v9.0.0
(https://www.graphpad.com/).

Cryo-EM sample preparation and data collection
To prepare the cryo-EM sample of L-VP35, 3 pl protein solution (0.6
mg ml™) was loaded into a cleaned Nitai grid (R1.2/1.3), which was
blotted for 3 s with a humidity of 100% at 4 °C, and then plunged into
liquid ethane using an FEI Vitrobot Mark IV. The well-prepared cryo-
genic specimens were transferred onto an FEI Titan Krios transmission
electron microscope for data collection. Cryo-EM micrographs were
automatically collected using Serial-EM software using beam-image
shiftimaging scheme.Images were recorded with aK3-subunit detector
using the super-resolution counting mode at a calibrated magnifica-
tion 0f 22,500, corresponding to a pixel size of 1.07 A. The exposure
was performed with a dose rate of 20 e * pixel™ s and an accumula-
tive dose of 60 e ' A2for each micrograph, which fractionated into 32
frames. The defocus range of this dataset was roughly -1.5t0 -2.6 pm.
For L-VP35 complex in the non-initiation state, the protein sample
was diluted with enzymatic reaction buffer and then mixed with RNA
at amolar ratio of protein:RNA of 1:2. After incubation for 1 h onice,
the complex was applied to a glow-discharged graphene coated grid
(R1.2/1.3). The process of data collection was almost as same as above
with a modified magnification of 29,000, yielding to a pixel size of
0.83 A.Eachimage was exposed with a dose rate at 20 e * pixel s and
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total dose of 60 e A2and fractionated into amovie stack of 32 frames.
The defocus range of this dataset was roughly -1.2 to 3.0 pm.

For the L-VP35-suramin complex, the purified protein was diluted
to 0.4 mg ml™ using salt-free buffer to reduce the concentration of
NaClto300 mM andincubated with suraminat4 °Cfor1h. Analiquot
of 3 pl L-VP35-suramin complex was loaded onto glow-discharged
Nitai grid (R1.2/1.3) following the same protocol for L-VP35. The micro-
graphs were collected on a 300 kV Titan Krios transmission electron
microscope equipped with a post-column GIF Quantum energy filter
(Gantan) with a silt width of 20 eV. The images were recorded with K2
direct detection camara using the super-resolution counting mode
with a calibrated pixel size of 1.04 A on micrographs. Each stack was
exposed with a dose rate at 10 e pixel? s and total dose of 60 e A
and fractionated into a movie stack of 32 frames. The defocus range
of this dataset was roughly —0.9 to —2.4 pm.

Image processing

The movie frames were aligned using MotionCor2¢ and the contrast
transfer function (CTF) values of each micrograph were determined
using CTFFind4”. Fifty micrographs were selected for automatic
particles picking using Laplacian-of-Gaussian bolb detection, and
were subjected to two-dimensional (2D) classification to generate
templates for autopicking against entire dataset. All subsequent
classification and reconstruction procedures were performed using
Relion-3.0°%. For L-VP35 complex, a total of 6,000,000 particles were
selected from 4,432 micrographs, and were reduced to -3,300,000
particles after three rounds of 2D classification. Due to lack of homol-
ogous structure, we generated the ab initio model (6 classes) using
Relion-3.0 and selected the best class low-passed to 60 A as the initial
reference model for 3D classification. After two iterative rounds of
3D classification, a clean dataset of 1,083,293 particles from two
classes with clear features of secondary-structure elements were
subjected to 3D refinement, which yielded a reconstruction map at
3.5 A. To further improve the map resolution, we performed dose
weighting using MotionCor2 discarding the first two and last 14
frames in each stack to generate a reduced dataset with total dose
of 30 e A2 In addition, CTF refinement was performed to correct
thelocal CTF values of each particle. After a final round of 3D refine-
ment, we obtained a better map with a resolution at 3.0 A. During
above image processing, we noticed that extra densities belonging
to VP35 oligomerization domain were cut off due to small box size.
We extracted these particles with larger box size and re-centred them
into the centre of whole particle not focused on L protein. Additional
round of 3D classification was performed to discard bad particles
among eight classes, and two of them showed obvious structural
features. Toavoid the density of L protein affecting the alignment, we
performed particle subtraction that was subjected to the final round
of 3D classification and 3D refinement with local angular search, and
generated a reconstruction map at 3.4 A for VP35 oligomerization
domain (Supplementary Fig.2). The processing of dataset for EBOV
L-VP35inthe non-initiation state was quite straightforward. A total
of 4,625 micrographs were collected, and-5,000,000 particles were
picked from the micrographs. After three rounds of 2D classification
and two rounds of 3D classification, a clean dataset of 475,325 par-
ticleswere subjected to 3D refinement, which yielded a final map at
3.4 A resolution. Although we found a mass of density at C-terminal
domain of VP35d, we were unable to reconstruct this region using
local refinement or signal subtraction (Supplementary Fig. 4). The
data processing for L-VP35-suramin complex was similar to the
previous procedure. Atotal of 3,200,000 particles were auto-picked
from 2,845 images, and after several rounds of 2D classification and
three rounds of 3D classification, the remaining 193,982 particles
were subjected to 3D refinement which yielded the density map at
3.3 A resolution (Supplementary Fig. 5). The local resolution maps
were evaluated by ResMap®’.

Model building and refinement

The low sequence identity between EBOV L and other polymerases
prevented us using any reported structure as a starting model. The
quality of map is good enough for us manually modelling ab initio.
The density for VP35 C-termini was well fitted with the reported crystal
structure (PDBID:3L26). However, the oligomerization domain could
not be fitted satisfactorily and was built manually. The initial coordi-
nates were refined against the corresponding maps using PHENIX®®
with secondary-structure restraints and Ramachandran restraints
applied. And then, we performed manual model building to improve
local fit using COOT®. The stereochemical quality of each model was
assessed using MolProbity®. Structural figures were prepared with
Pymol (https://pymol.org/) and CHIMERAX®,

AlphaFold2 prediction of EBOVL

Thewhole structure of EBOV L protein was predicted by AlphaFold2%*
with default settings. We compared the top five ranked outputs with
our solved structure and selected the most similar one to prepare the
figures.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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ExtendedDataFig.1| The purified EBOVL-VP35 complex has polymerization  polymeraseactivity, and the product bands areinhomogeneous. The active
activity. (a, b) Size-exclusion chromatography, SDS-PAGE and westernblotting  site D742A mutant can abolish the production of RNA. Otherwise, asmall

profiles of EBOV L-VP35WT (a) and D742A mutant (b) proteins. Molecular percentage of full-length product (indicated by red arrow) can be clearly seen
weights (inkilodaltons, kDa) of ladder makers are shownin the left, and the whenthe productbands are overexposed (d). The datashownabove are
Land VP35bandsarelabeled ontheright. (c, d) Invitro primer extension assay representativeresults of atleast three independent experiments using

of L'VP35 complex. It demonstrates the purified complex protein possesses different protein preparations.
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Extended DataFig.2|Structural comparison of EBOVL-VP35and HPIV5L-P P/VP35protein (f) between EBOV L-VP35 and HPIVS L-P complex shows a similar
complex. Overall structure of EBOV L-VP35 (a) and HPIVS5 L-P complex (PDB architecture, but withlocal differences.
6v85) (b). Overlay of the NTD (c), RdRp (d), PRNTase (e) domains and tetrameric
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Extended DataFig. 3 | The paths for RNA synthesis within EBOVL-VP35
structure. (a) The EBOV L-VP35structureis showninsurface representationto

highlight the entry channel of NTP substrate which was indicated by ared cycle.

(b) RNA elongation model of EBOV L-VP35 complex. Template RNA entry and
exitchannelsareindicated as blackarrows, and NTP entry and nascent RNA

Template

productexittunnelsareindicated by red and purple arrows. (c) Cutoff view of
the L protein shownin electrostatic surfacerepresentation (blue, positive
charge; red, negative charge). The paths are filled by the template and nascent
RNAsstrands which are modeled based on the structure of rotavirus
polymerase complex with insitu elongation conformation (PDB 60GZ).
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Extended DataFig. 4 |Thecritical role of theinsertion elementin
transcriptionactivity of EBOVRNP. (a) Clear green fluorescence canbe
visualized with the wild type L protein. However, for theinsertion-element-
deletion L .,5GS construct (residues 196 to 225 consisting of the insertion
loop structure were deleted and two ends were linked with GS residues),
nogreen fluorescence was observed. As anegative control, the L gene was not
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transfected in the replicon system. (b) The expression levels of NP, VP35 and
VP30 were measured using Western Blotting assay and the tubulin was used as
loading control. The datashown arerepresentative of threeindependent
experiments. (c) The transcriptionlevels of LmRNA were analyzed by RT-PCR.
The datarepresent mean values (histograms) s.d. (error bars) from three
independent experiments.
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Extended DataFig. 5| The predicted full-length structure of EBOVL by (b) The modeled full-length structure of EBOV L-VP35 complex. (c-e) Close-up
AlphaFold2. (a) Superimposition of the predicted and solved structures of view of the predicted structures of CD (purple), MTase (magenta) and CTD
EBOV L protein, and they could be overlaid well. The predicted structure is (black) domains.

coloredingrey, while the solved structureis colored as depicted in Fig. 1.
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Extended DataFig. 6 | Structural analysis of the EBOVL PRNTase domain. indicated by different colors (motif A’, red; motif B’, purple; motif C’, yellow;
(a) Overlay of the PRNTase domains of L proteins from the EBOV (colored by motif D’, blue; motif E’, orange). The Caatoms of the conserved glycines in GxxT
cyan) and RSV (grey). (b) The same view asin (a) but with catalytic motifs motifand motif A’ (Gly1129) are shownin sphere representation.
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Extended DataFig.7 | Conformational change of the primingloop and the primingloop retracting into PRNTase domain and the supporting helix
supporting helix. The primingloop and supporting helix would clash with moving outward. The RNA was modeled based on the structure of rotavirus
RNA duplex formed during the RNA elongation process (a),and wouldundergo ~ polymerase complex withinsitu elongation conformation (PDB 60GZ), and the
conformational change torelease adequate space for RNA elongation (b) with RdRpactive site wasindicated by ared star.
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Extended DataFig. 8|Structural comparison of filovirus VP35 0Ds. (a) The (PDB 6GBO) and trimeric MARVVP350D (PDB5TOI). (e) The sequence
structure of tetrameric VP35 OD from EBOV L-VP35 complex. (b—d) The crystal alignment of VP35 OD regions from different filoviruses.
structures of tetrameric REBOV VP35 0D (PDB 6GBQ), trimeric EBOVVP350D
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Extended DataFig.9|The entangled tetrameric VP35 wraps around interactions between VP35 protomers. The key interacting residues are shown
L protein. (a) EBOV Lisshowningreysurfacerepresentation,and VP35 instick representation. Hydrogen bonds are presented in yellow dash lines,
protomers areshownin cartoonrepresentation with different colors. while the hydrogenbonds between the anti-parallel § strands are not shown

(b) Structural conformations of different VP35 protomers. (c) The major atomic (leftside).
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Extended DataFig.10|Bindinginterfacebetween VP35and EBOV Landits
comparisonwith other nsNSV polymerase complexes. (a) The binding
footprints of VP35 protomers on EBOV L areindicated by black dash line. The
interactingresidues of L are colored and labelled according to the bound VP35
protomers, and the overlappingregions are shownin orange (VP35b/d) and
pink (VP35c/d), respectively. (b) Comparison of the binding interfaces of EBOV

L-VP35and RSV L-P polymerase complexes. The Land Pof RSV are coloredin
black and white, respectively. The Land VP35 of EBOV are colored asin Fig. 4.
(c) Sequencealignment of critical interactive residues from L proteinsamong
Mononegavirales. The L residues that formed hydrogen bonds with the
residues from VP350of EBOV and P of RSV areindicated by red and blue stars,
respectively.
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Extended DataFig.11|See next page for caption.
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Extended DataFig.11|Theinhibition mechanism of suraminagainst EBOV
L-VP35. (a) The chemical structure of suramin. Each benzenering groupis
labeled by aunique symbol. (b) Inhibitory activity of suramin against EBOV
L-VP35 complex was measured at enzymatic level. The RNA products were
showninurea-PAGE, and aseries of concentration of suramin were added in
theenzymereactionsystem. The datashownare representative of three
independent experiments using different protein preparations. (c) The 50%
cytotoxicity concentration (CCs,) of suramin was determined with the stable
repliconcell. Each data pointindicates the mean value of threeindependent
experimentsandtheerrorbarsrepresent standard deviation. (d-e)

Thestructures of EBOV L-VP35 (d) and L-VP35-suramin (e) complex are shownin
surfacerepresentation,and the NTP entry channelisindicated by adashed
circle. The suraminisstuckinthe NTPentry channelto prevent NTP substrates
reachingactive site of RdRp. (f-g) The suramin could also hinder the activity of
RdRp by occupying the spaces for product RNA strand. Cutoffview of the L-VP35-
suramin complex overlapped with the modeled RNA (f). The tail part of suramin
molecule would clash with nascent RNA product strand (g). The template
(golden) and product (black) RNA strands are modeled based on the structure
of rotavirus polymerase with insitu elongation conformation (PDB 60GZ).
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Extended DataFig.12|Structural comparison of EBOVL-VP35-suramin complex (PDB 3URO) was performed based on the RdARp domain. A close-up
complex with SARS-CoV-2 RdRp-suramin and Murine Noroviruses (MNV) view of suramin within the catalytic chamber in the SARS-CoV-2 RdRp-suramin
RdRp-suramin complex. (a-b) Superimposition of the EBOV L-VP35-suramin complex (c), EBOV L-VP35-suramin complex (d) and MNV RdRp-suramin

with SARS-CoV-2RdRp-suramin complex (PDB 7D4F) and MNV RdRp-suramin complex (e).
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Data exclusions  No data was excluded from the analyse.

Replication All biochemical experiments including RdRp enzymatic activity assay and its inhibition by suramin, mini-replicon assay, cell-based assay for
antiviral activity of suramin, and cytotoxicity assay were performed at least three times. All replicas of data produced similar results.

Randomization  This is not relevant to this study, because no grouping was needed.

Blinding Investigators were not blinded to group allocation, because no grouping was needed for this study.
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Human research participants
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Dual use research of concern

Antibodies
Antibodies used We generated polyclonal antibodies against VP35, NP, VP30 by immunizing rabbit. Serum was then harvested to detect the
expression level of these proteins using western blot analysis. The mouse anti-Strep (Easybio, BE2038) was used to confirm the
degradation bands of L protein and mouse anti-tubulin (Easybio, BEO031) monoclonal antibodies was used to detect tubulin in
replicon assay.
Validation The mouse anti-Strep and mouse anti-tubulin monoclonal antibodies have been validated by the manufacture. The validation

materials can be found on the companies' website. We tested the avidity of these polyclonal antibodies by western blotting in
extended figure 4.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Insect cell lines (SF9 and High Five), purchased from the Invitrogen company, were used for protein expression. The stable
EBOV-GLuc-Hyg replicon cell is a kindly gift from Prof. Zhong Jin as indicated in the method. HEK293T cell,purchased from
Thermofisher scientific and stored in our lab, is used to perform replicon assay.

Authentication These cells are routinely maintained in our lab. No other authentication at the lab level was performed.

Mycoplasma contamination All cells were tested negative for Mycoplasma contamination.




Commonly misidentified lines  no commonly misidentified cells were used in this study.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Rabbits (3-4 months old ) are immunized by purified proteins to generate polyclonal antibodies.
Wild animals This study did not involve wild animals.
Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight All rabbit experiments were performed according to the procedures approved by the Chinese Academy of Science and complied with
all relevant ethical laws.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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