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Recurrent repeat expansions in human 
cancer genomes

Graham S. Erwin1,15 ✉, Gamze Gürsoy2,3,15, Rashid Al-Abri1, Ashwini Suriyaprakash1, 
Egor Dolzhenko4, Kevin Zhu1, Christian R. Hoerner5, Shannon M. White1, Lucia Ramirez1, 
Ananya Vadlakonda1, Alekhya Vadlakonda1, Konor von Kraut1, Julia Park1, 
Charlotte M. Brannon1, Daniel A. Sumano1, Raushun A. Kirtikar1, Alicia A. Erwin6, 
Thomas J. Metzner5, Ryan K. C. Yuen7,8, Alice C. Fan5,9, John T. Leppert9,10,11, Michael A. Eberle4, 
Mark Gerstein12,13,14 ✉ & Michael P. Snyder1 ✉

Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known 
to cause more than 50 diseases1,2. However, repeat expansions are often not explored 
beyond neurological and neurodegenerative disorders. In some cancers, mutations 
accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; 
however, larger repeat expansions have not been systematically analysed in cancer3–8. 
Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. 
In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of 
which (155/160) were subtype specific. We found that rREs were non-uniformly 
distributed in the genome with enrichment near candidate cis-regulatory elements, 
suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, 
located near a regulatory element in the first intron of UGT2B7 was detected in 34%  
of renal cell carcinoma samples and was validated by long-read DNA sequencing. 
Moreover, in preliminary experiments, treating cells that harbour this rRE with a 
GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. 
Overall, our results suggest that rREs may be an important but unexplored source of 
genetic variation in human cancer, and we provide a comprehensive catalogue for 
further study.

Expansions of tandem DNA repeats (TRs) are known to cause more 
than 50 devastating human diseases, including Huntington’s disease  
and fragile X syndrome1,2. TR tracts that cause human disease are 
typically large (more than 100 bp)1. However, identifying large TRs 
with short-read DNA sequencing methods is difficult because the 
repeat sequences are ubiquitous in the genome and many are too 
large—larger than the typical sequencing read length—to uniquely 
map to the reference genome9. Thus, many large TRs go undetected 
with current genomic technologies, and, despite their importance to 
monogenic disease, the frequency and function of recurrent repeat 
expansions (rREs) are unknown in complex human genetic diseases 
such as cancer10.

Previous studies have profiled the landscape of alterations in short 
TRs (STRs) in cancer genomes3–5. In particular, microsatellite instability 
(MSI)6–8, defined by an alteration in the lengths of STRs, is prevalent 
in various types of cancer, including in endometrial (30%), stomach 
(20%) and colorectal (15%) cancers3,4,11–13. However, systematic analysis 

of the frequency of genome-wide large TR expansions has not been 
studied in cancer even though such expansions were posited to exist 
more than 25 years ago14.

Recently, new bioinformatic tools to identify repeat expansions in 
short-read whole-genome sequencing (WGS) datasets15–18 have led 
to the identification of both known and novel repeat expansions in 
human disease, primarily in the area of neurological disorders where 
repeat expansions have historically been studied15–23. Here we analysed 
2,622 human cancer genomes with matching normal samples for the 
presence of somatic repeat expansions. We identified 160 recurrent 
repeat expansions (rREs) in seven types of cancer, including many rREs 
located in or near known regulatory elements. One of these rREs was 
observed in 34% of kidney cancers, and targeting this repeat expansion 
with sequence-specific DNA binders led to a dose-dependent decrease 
in cellular proliferation. Overall, our approach identifies a new class of 
recurrent changes in cancer genomes and provides an initial resource 
of these changes.
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Recurrent repeat expansions
We collected uniformly processed alignments of WGS data for tumour–
normal pairs in the International Cancer Genome Consortium (ICGC) 
and The Cancer Genome Atlas (TCGA), both a part of the Pan-Cancer 
Analysis of Whole Genomes (PCAWG) datasets24. After filtering, these 
data consisted of 2,622 cancer genomes from 2,509 patients across 
29 different cancer types (Extended Data Fig. 1). Each cancer type was 
treated as its own cohort and was analysed independently of the other 
cancer types. We called somatic rREs with ExpansionHunter Denovo 
(EHdn) (Methods), which measures TRs whose length exceeds the 
sequencing read length in short-read sequencing datasets25,26. That 
is, EHdn performs case–control comparisons using a non-parametric 
statistical test to determine whether repeat length is longer in tumour 
genomes than in matching normal genomes. This approach is analo-
gous to joint population-level genotyping.

We first confirmed the accuracy of EHdn by performing whole- 
genome short- and long-read sequencing on the 786-O and Caki-1 cancer  
cell lines. We found that EHdn captured 72% of the repeat expansions 
observed in long-read sequencing (Extended Data Fig. 2). We also tested 
the effect of sequencing coverage on the detection of rREs and found 
that EHdn was robust down to 30× coverage (Extended Data Fig. 2). 
We then analysed 2,622 matching tumour and normal genomes with 
EHdn (285,363 TRs). We identified 578 candidate rREs (locus-level false 
discovery rate (FDR) < 10%).

EHdn is expected to be sensitive to the copy number variations 
observed in cancer genomes. To account for copy number variants, 
we devised and implemented a local read depth filtering method that 
normalizes the signal originating from repeat reads using the read depth 
in the vicinity of the TR (Methods and Extended Data Fig. 3). We bench-
marked the local read depth normalization approach with simulated 
chromosomal amplifications ranging from two (diploid) to ten copies. 
We found that this filter accounted for changes in chromosomal copy 
number in a manner superior to standard global read depth normaliza-
tion (Extended Data Fig. 3). Overall, we conclude that local read depth 
normalization is valuable to identify bona fide rREs in cancer genomes 
and that many of the rREs that pass the filter are expanded in cancer. For 
example, without local read depth normalization, we could detect only 
31% of candidate rREs in independent cohorts of matching tumour–nor-
mal tissue samples for breast, prostate and kidney cancers (15, 18 and 12 
patients, respectively). Our local read depth filtering approach removed 
more than 75% (418/578) of false-positive candidate rREs (Extended Data 
Fig. 3). Notably, several rRE candidates that were removed are situated 
in hotspots for chromosomal amplification, such as chromosomal 8q 
amplifications that increase MYC production in breast cancer (Extended 
Data Fig. 3)27. Our analysis suggests that the standalone EHdn method 
may have selected these loci owing to amplification rather than repeat 
expansions, and their removal is thus important.

After implementing our local read depth filtering strategy, we 
increased our detection rate to 57% (8/14) in independent cohorts 
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Fig. 1 | Genome-wide detection of rREs in cancer genomes. a, Scheme of  
the method to identify rREs in 2,509 patients across 29 human cancer types:  
1, head and neck squamous cell carcinoma (Head−SCC); 2, skin–melanoma; 3, 
glioblastoma (CNS–GBM); 4, medulloblastoma (CNS−Medullo); 5, pilocytic 
astrocytoma (CNS–PiloAstro); 6, oesophageal adenocarcinoma (Oeso−AdenoCA); 
7, osteosarcoma (Bone−Osteosarc); 8, leiomyosarcoma (Bone−Leiomyo); 9, 
thyroid adenocarcinoma (Thy–AdenoCA); 10, lung adenocarcinoma (Lung−
AdenoCA); 11, lung squamous cell carcinoma (Lung−SCC); 12, mammary gland 
adenocarcinoma (Breast−AdenoCA); 13, B cell non-Hodgkin lymphoma 
(Lymph−BNHL); 14, chronic lymphocytic leukaemia (Lymph−CLL); 15, acute 
myeloid leukaemia (Myeloid−AML); 16, myeloproliferative neoplasm (Myeloid−
MPN); 17, biliary adenocarcinoma (Biliary–AdenoCA); 18, hepatocellular 
carcinoma (Liver−HCC); 19, stomach adenocarcinoma (Stomach−AdenoCA); 20, 
pancreatic adenocarcinoma (Panc−AdenoCA); 21, pancreatic neuroendocrine 

tumour (Panc−Endocrine); 22, colorectal adenocarcinoma (ColoRect–AdenoCA); 
23, prostatic adenocarcinoma (Prost−AdenoCA); 24, chromophobe renal cell 
carcinoma (Kidney–ChRCC); 25, renal cell carcinoma (Kidney–RCC); 26, papillary 
renal cell carcinoma (Kidney−pRCC); 27, uterine adenocarcinoma (Uterus−
AdenoCA); 28, ovarian adenocarcinoma (Ovary−AdenoCA); 29, transitional cell 
carcinoma of the bladder (Bladder−TCC). b, Distribution of rREs across cancer 
types. c, Proportion of cancer genomes with rREs. d, STR mutation rate for 
cancer genomes with and without an rRE. Two-tailed Mann–Whitney test 
(n = 2,465 cancer genomes); NS, not significant. Boxes extend from the 25th 
percentile to the 75th percentile, the centre line represents the median and 
whiskers represent minima and maxima. e, Distribution of rREs across MSS  
and MSI-high cancers. Chi-squared (two-tailed) test with Yates’ correction 
(n = 2,482 cancer genomes).



98  |  Nature  |  Vol 613  |  5 January 2023

Article

(Extended Data Fig. 3). Notably, the loci we could not validate had lower 
expansion frequencies (5–12%). These rREs may be real but may also 
have been more difficult to validate in the small validation cohorts 
(Supplementary Table 6). Thus, we believe that this number may be an 
underestimate of the independent detection rate. Of the 14 candidate 
rREs that failed our local read depth filter, 29% (4/14) were detected in 
independent cohorts of samples, indicating that the filtering removes 
most loci that cannot be validated (Extended Data Fig. 3), but removes 
some true positives as well.

After accounting for local read depth, we detected 160 rREs in seven 
human cancer types (rRE catalogue v1.0; Fig. 1). We expected high 
concordance with ExpansionHunter given that this tool is related to 
EHdn, and indeed we observed 91% concordance with ExpansionHunter 
(Extended Data Fig. 4). We found that most (80%) of these loci were 
rarely expanded in the general population (<5% of the time, n = 6,514 
genomes; Extended Data Fig. 2). rREs were primarily observed in pros-
tate and liver cancers, but we also detected rREs in ovarian, pilocytic 
astrocytoma, renal cell carcinoma (RCC), chromophobe RCC and squa-
mous cell lung carcinoma. Thus, rREs are found in tissues derived from 
each of the three primary germ layers (ectoderm, mesoderm and endo-
derm), suggesting that these expansions are a phenomenon inherent 
to the human genome rather than any tissue-specific process. We next 
performed a preliminary analysis to estimate the presence of somatic 
repeat expansions in individual cancer genomes. In prostate and liver 
cancers, most cancer genomes (93% and 95%, respectively) contained 
at least one rRE, with some genomes harbouring several rREs (Fig. 1c). 
For some pathogenic repeats, a larger TR length at birth predisposes 
an individual to somatic repeat expansions later in life1,2, but we did 
not generally observe this with rREs (Supplementary Table 7). Overall, 
rREs were found in 7 of the 29 human cancer types examined and were 
largely cancer subtype specific.

We next examined whether rREs correlate with changes in MSI3,4. We 
determined whether samples harbouring an rRE had a higher muta-
tion rate in STRs, which is a hallmark of MSI3,28. We did not observe any 
significant difference in STR mutation rate for genomes with an rRE 

compared with those lacking an rRE (two-tailed Wilcoxon rank-sum 
test, P = 0.27; Fig. 1d). We also compared cancer genomes harbouring 
rREs with cancer genomes previously identified as MSI, using recent 
results from the PCAWG consortium28. We did not observe any enrich-
ment in MSI for samples harbouring an rRE and instead found a weak but 
significant preference for rREs in microsatellite-stable (MSS) samples, 
not MSI samples (two-tailed Wilcoxon rank-sum test, P = 0.04; Fig. 1e 
and Extended Data Fig. 5). Thus, our findings might suggest a model in 
which rREs are formed by a process that is distinct from MSI.

In addition to MSI, different mutational processes lead to a signature 
of somatic mutations. We tested whether rREs are associated with 
known mutational signatures by comparing them to 49 signatures of 
single-base substitutions (SBS) and 11 signatures of doublet-base sub-
stitutions (DBS)29. We performed multiple linear regression to predict 
the number of rREs in a sample on the basis of SBS and DBS signatures. 
Only one DBS signature, DBS2, showed a very weak association with 
rREs (r2 = 0.12) (Extended Data Fig. 5).

Some rREs overlap regulatory elements
Among the 160 rREs, we observed a variety of different motifs (Supple-
mentary Table 1) whose repeat unit length followed a bimodal distribu-
tion, in line with REs identified in other diseases (Fig. 2a and Extended 
Data Figs. 6 and 7)26. rREs were distributed across a range of G+C con-
tent, and approximately half (76/160) had a G+C content of less than 
50% (Supplementary Table 1). Six rREs contained a known pathogenic 
motif, all of which were GAA30. We examined whether any motifs were 
enriched in the rRE catalogue as compared with the Tandem Repeat 
Finder (TRF) catalogue. Although this enrichment could arise from 
a biological and/or technical process, we found that one of the three 
enriched motifs was GAA (Fig. 2b). As an example, Friedreich’s ataxia 
is caused by a repeat expansion of a GAA motif in the intron of the gene 
encoding frataxin. This expansion results in DNA methylation and the 
deposition of repressive chromatin marks, leading to robust repression 
of the gene and development of disease30. Because of this, we suspect 
that some of the rREs found in cancer might alter the epigenome and 
affect gene regulatory networks.

rREs were distributed non-uniformly across the genome, with a bias 
towards the ends of chromosome arms (Fig. 2c and Extended Data 
Fig. 6). This observation is consistent with previous reports of TRs and 
structural variants16,31. We also examined the distribution of rREs rela-
tive to gene features with annotatr (Fig. 2d)32. The 7% of rREs labelled 
as exonic appeared proximal to, but not within, exons, but others were 
in introns, untranslated regions (UTRs) and splice sites. These results 
suggest that rREs may have different functional roles in the regulation 
of gene expression.

We measured the distance between rREs and candidate cis-regulatory 
elements (cCREs)33; cCREs comprise approximately 1 million functional 
elements, including promoters, enhancers, DNase-accessible regions 
and insulators bound by CCCTC-binding factor (CTCF). An rRE near a 
regulatory element could alter the function of that regulatory element, 
as is observed in fragile X syndrome and Friedreich’s ataxia1. Interest-
ingly, rREs were located closer to cCREs than expected by chance, and 
we found that 54 of the 160 rREs directly overlapped with a known 
cCRE (Welch’s t test, P = 4.76 × 10–23; Fig. 2e and Extended Data Fig. 7). 
Thus, rREs are often found in or near functional regions of the genome.

rREs with a connection to cancer
We mapped each rRE to the nearest gene and found that nine rREs mapped 
to tier 1 genes present in the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database (Fig. 3 and Supplementary Table 1). We also observed 
a strong correlation with cancer-related genes ( Jensen disease–gene 
associations34). That is, four of the top five diseases associated with the 
collection of 160 rREs were cancers (Fig. 3b and Supplementary Table 4).
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To examine whether some rREs have a role in oncogenesis, we looked 
at their association with previously identified cancer risk loci. Many 
rREs were identified in prostate cancer, and 63 loci have previously 
been associated with susceptibility to prostate cancer from available 
genome-wide association studies35. When we examined the colocali-
zation of rREs and cancer risk loci in prostate cancer, we found that 
rREs were located closer to prostate cancer susceptibility loci than 
standard STRs or than would be expected by chance (Student’s t test, 
FDR q = 0.08; Fig. 3c and Extended Data Fig. 7).

We next studied the relationship between the occurrence of COS-
MIC genes and the occurrence of rREs (Fig. 3d). Interestingly, after 
correcting for multiple-hypothesis testing, somatic mutations were 
found to occur significantly more in patients’ genomes without rREs 
for five COSMIC genes. Among these genes, TP53 in particular is strik-
ing, as wild-type TP53 is critical for mediating the pathogenic effects 
of repeat expansions in both amyotrophic lateral sclerosis (ALS) and 
Huntington’s disease36,37. In line with these findings, the product of 
the RAD53 DNA damage repair gene in yeast is phosphorylated and 
activated in the presence of an expanded repeat38.

MSI-high cancers are often correlated with higher levels of immune 
cell infiltration39. We considered whether some rREs might also be 
associated with higher immune cell infiltration, but we did not observe 
a correlation between cytotoxic activity40 and the presence of an rRE 
(Extended Data Fig. 8). Because there were matching RNA sequenc-
ing (RNA-seq) data for only 4 of the 160 rREs, this analysis warrants 
further investigation as more matching WGS and RNA-seq datasets 
become available.

An intronic rRE detected in RCC
A GAAA expansion located in the intron of UGT2B7 was observed in 
34% of RCC samples. UGT2B7 encodes a glucuronidase that clears 

small molecules—including chemotherapeutics—from the body and 
is selectively expressed in the kidney and liver41.

With gel electrophoresis, we identified the expected TR size of 
~26 GAAA repeats in the normal kidney cell line HK-2, corresponding 
closely to the length observed in the reference genome (Fig. 4a). By 
contrast, we identified an expansion of between ~63 and ~160 GAAA 
repeat units in five of eight clear cell RCC cell lines. Most expansions 
were heterozygous (Fig. 4a). Long-read DNA sequencing with highly 
accurate PacBio HiFi reads confirmed the PCR results and showed 
the precise structure of this repeat expansion at single-base-pair 
resolution for both the 786-O and Caki-1 cell lines (Fig. 4b). We also 
detected this repeat expansion in 5 of 12 primary kidney tumour 
tissue samples from patients with clear cell RCC (Extended Data 
Fig. 9), which showed more heterogeneity than the RCC cell lines; 
more heterogeneity for human tumour samples than for clonal cell 
lines might be expected.

Given that UGT2B7 is selectively expressed in the liver and kidney, and 
that it has a role in clearing small molecules from the body, we exam-
ined whether this rRE may be located near any functional elements that 
could regulate its expression. Analysis of the chromatin environment 
surrounding the rRE in UGT2B7 identified a nearby enhancer, raising 
the possibility that this rRE alters the expression of UGT2B7 (Fig. 4c). 
The repeat motif of this rRE, GAAA, appears similar to the pathogenic 
repeat motif found in Friedreich’s ataxia, which is GAA. The pathogenic 
GAA-repeat expansion blocks FXN expression30. We therefore consid-
ered whether the intronic GAAA-repeat expansion might repress the 
expression of UGT2B; we found a modest decrease in expression that 
was not statistically significant (Extended Data Fig. 8). While this rRE was 
also not associated with a difference in survival (Extended Data Fig. 8), 
it was associated with a significant decrease in a transcript isoform of 
UGT2B7 (Wald test with FDR correction, P = 0.0048) (Fig. 4e). Interest-
ingly, a shift in isoform usage of UGT2B7 has been noted in cancer42.
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Repeat-targeting molecules
Do GAAA-repeat expansions contribute to cell proliferation? Target-
ing pathogenic repeat expansions with small molecules has been 
demonstrated previously43. We previously showed that targeting a 
related TR motif, GAA, with synthetic transcription elongation factors 
(Syn-TEF1) reverses pathogenesis in several models of Friedreich’s 

ataxia44. Therefore, if the GAAA rRE in RCC behaves similarly, a Syn-TEF 
targeting GAAA might have anti-proliferative activity. We rationally 
designed Syn-TEF3, which contains a GAAA-targeting polyamide and 
a bromodomain ligand, JQ1, designed to recruit part of the transcrip-
tional machinery (Fig. 5a and Supplementary Fig. 2). We also included 
a control molecule, Syn-TEF4, which targets GGAA TRs, as well as poly-
amides PA3 and PA4 that lack the JQ1 domain. We have previously shown 
that Syn-TEFs and polyamides localize to repetitive TRs in living cells44,45.

We examined the effect of Syn-TEFs on cell proliferation (Fig. 5b). 
Caki-1 and 786-O cells were selected because they have the largest (164 
repeats) and smallest (32 repeats) GAAA tracts, respectively, within 
the first intron of UGT2B7. We observed that Syn-TEF3 led to a signifi-
cant decrease in the proliferation of Caki-1 cells in a dose-dependent 
manner, but had little effect on 786-O cells. Syn-TEF4, which does not 
target GAAA TRs, did not significantly decrease proliferation in either 
of the cell lines tested, demonstrating a requirement for GAAA-specific 
targeting (Fig. 5b). Two additional cell lines with GAAA-repeat expan-
sions as well as two additional control non-expanded cell lines showed 
a similar association between Syn-TEF sensitivity and presence of the 
repeat expansion (Extended Data Fig. 10). In line with this finding, Caki-1 
cells treated with Syn-TEF3 exhibited a significant increase in cell death 
when compared with the DMSO-treated control, as measured by pro-
pidium iodide staining (Fig. 5c,d and Extended Data Fig. 10). By contrast, 
786-O cells treated with Syn-TEF3 showed no significant difference in 
propidium iodide-positive cells when compared with DMSO-treated 
cells (Fig. 5c,d and Extended Data Fig. 10). Notably, the Syn-TEF4, PA3 
and PA4 control agents had no significant effect on cell death in either 
cell line when compared with vehicle control (Fig. 5c,d and Extended 
Data Fig. 10). These results are preliminary and warrant further study, 
but they suggest that GAAA-repeat expansions may represent a genetic 
vulnerability in RCC.

Discussion
Here we conducted a genome-wide survey of rREs, distinct from MSI, 
across cancer genomes. Our data (1) identified 160 rREs in seven human 
cancer types and showed that (2) most (155 of 160) rREs are cancer sub-
type specific; (3) among diseases, rREs are enriched in human cancer 
loci and tend to occur near regulatory elements; (4) rREs do not cor-
relate with MSI status; and (5) targeting a GAAA-repeat expansion in 
RCC with a small molecule leads to cancer cell killing. Taken together, 
our results uncover an unexplored genetic alteration in cancer genomes 
with important mechanistic and therapeutic implications.

Cancer cells evolve and adapt in response to environmental or phar-
macological perturbations, but the mechanisms supporting these 
changes are still being uncovered. One source of genetic variation that 
may enable genetic adaptations is TR DNA sequences. Mutations in the 
repeat length of TRs can occur up to 10,000 times more frequently 
than single-nucleotide variants (SNVs) or insertions and deletions 
(indels)1. Repeat expansions may provide a source of genetic variation 
to enable cancer cells to adapt to changes in the environment46. Indeed, 
colorectal cancers acquire mutations in STRs in response to targeted 
therapy just 24 h after treatment, suggesting that mutations in these 
regions may associate with rapid evolution47. In future studies, it will 
be particularly valuable to study repeat expansions in the genomes of 
cancer cells that face changing environments, including metastasis 
and chemotherapy.

Historically, MSI has been the focus of efforts to profile changes in 
STRs in cancer genomes because specific cancer-causing genetic altera-
tions in repair genes can promote widespread STR alterations. Inter-
estingly, we find little to no correlation between rREs and MSI. These 
results are consistent with previous findings in which the correlation 
between MSI and repeat instability at larger TRs was not definitive48. 
MSI may contribute to a subtype of rREs that we have not yet uncovered, 
or rREs may arise from a mutation process that is distinct from that of 
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MSI. There are several different cellular repair systems for DNA, and the 
rREs we observed are presumably due to very specific locus-associated 
mechanisms or activities. Some of these repeat expansions may be due 
to cis regions with interesting DNA or chromatin configurations that 
are prone to expansion at distinct loci, rather than gene mutations that 
cause global trans effects, as occurs in MSI.

There are numerous mechanisms by which a repeat expansion can 
alter cellular function. Known pathogenic repeat expansions can alter 
the coding sequence of a protein, such as in the case of Huntington’s 
disease. However, several repeat expansions in non-coding regions 
alter gene expression1. In other instances, the repeat expansion can 
lead to a pathogenic RNA molecule (myotonic dystrophy) or protein 
(ALS)1. Finally, repeat expansions in MSI-associated cancers, which are 
too small to detect by EHdn, can disrupt DNA replication49. Thus, our 
catalogue represents a powerful resource to explore the mechanisms 
by which rREs alter cellular function in cancer.

Tools to identify repeat expansions are still in their infancy. The field 
would benefit from cohorts of samples with whole-genome long-read 
DNA sequencing data, improved bioinformatic methods, increased 
sequencing coverage and increased cohort sizes. As with other tools 
that identify repeat expansions from short-read sequencing data, we 

cannot distinguish zygosity from sample heterogeneity or obtain the 
precise lengths of repeats. Our independent experimental validation 
showed that some repeat expansions are heterogeneous (Extended 
Data Fig. 8). We suspect that tumour heterogeneity may lead to an 
under-reporting of rREs. Furthermore, this study focuses on somatic 
mutations, but repeat expansions that occur in the context of normal 
development will be another important area of study10. Furthermore, 
germline events that predispose an individual to cancer would also be 
worth studying; there is evidence that a TR in the androgen receptor 
gene is associated with tumour stage and tumour grade at prostate 
cancer onset50. Finally, we only detected changes in repeat length that 
were greater than sequencing read length. In future studies, it will be 
important to explore recurrent changes that are smaller in length. 
Finally, it is important to acknowledge that rREs could be mediators 
of phenotypes or passengers that result from genetic instability and 
clonal selection. In the one instance where we targeted an rRE in RCC, 
cell proliferation was reduced, in line with a mediator role for this rRE. 
Distinguishing between these two possibilities for each rRE will be an 
important line of work in the future.

To our knowledge, this is the first genome-wide survey of repeat 
expansions beyond a neurological or neurodegenerative disorder. 
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compounds as indicated. Relative cell density was measured by CCK-8 assay 
(Methods). Results are shown as the mean ± s.e.m. (n = 4 biological replicates). 
c, Quantification of the percentage of propidium iodide-positive cells. P values 
are from one-way ANOVA with Bonferroni’s correction for multiple 
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except n = 2 biological replicates for Syn-TEF3 in 786-O cells). d, Live-cell 
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Hoechst 33342 (blue). Scale bars, 100 μm. See also Extended Data Fig. 10.
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Article
Thousands of high-quality whole-genome sequences exist for many 
diseases, and our data provide evidence that repeat expansions should 
be explored beyond the classical bounds of neurodegenerative diseases 
where they have been most investigated. Our results provide a frame-
work to analyse WGS datasets from complex diseases such as cancer.
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Methods

Data curation
We obtained white-listed data from the ICGC and TCGA PCAWG dataset. 
The term ‘white-listed’ refers to samples that passed quality control 
by the PCAWG consortium24. Data were accessed through the Cancer 
Genome Collaboratory. We used aligned reads (BAM files), which were 
aligned to GRCh37 as described previously24. These data are available 
through the PCAWG data portal (https://docs.icgc.org/pcawg). A list of 
samples included in the analysis is available in Supplementary Table 2.

Identification of somatic rREs
We analysed tumour and matching normal samples for each cancer 
type independently. We executed EHdn (v0.9.0)16 with the following 
parameters: --min-anchor-mapq 50 --max-irr-mapq 40. To prioritize 
loci, we developed a workflow termed Tandem Repeat Locus Prior-
itization in Cancer (TROPIC). We included loci from chromosomes 
1–22, X and Y for downstream analysis. We removed loci where >10% 
of Anchored in-repeat read (IRR) values were >40, which is the theo-
retical maximum value. The P value (from a non-parametric one-sided 
Wilcoxon rank-sum test) for each locus was used to calculate an FDR 
q value. Loci with FDR < 0.10 are reported. We selected loci where >5% 
of samples had an Anchored IRR quotient of >2.5. The results of our 
filtering are available in Supplementary Table 3. For a repeat expan-
sion to be detected by EHdn, the TR was required to be larger than the 
sequencing read length. A somatic repeat expansion was defined as 
having FDR q < 0.05 in a comparison of the tumour and normal samples. 
We next calculated a preliminary estimate of the frequency of rREs in 
each cancer. To call repeat expansions in individual cancer samples, we 
analysed the distribution of tumour and normal Anchored IRR values 
and selected a conservative threshold for the Anchored IRR quotient 
((tumour Anchored IRR – normal Anchored IRR)/(normal Anchored 
IRR + 1)) > 2.5 (Extended Data Fig. 4).

Local read depth normalization
EHdn normalizes the number of Anchored IRRs for a given locus to 
the global read depth. To account for chromosomal amplifications 
and other forms of genetic variation that could alter local read depth, 
we performed the following normalization. For each rRE locus and 
sample in its corresponding cancer, samtools v1.13 was used with the 
parameter depth -r to find the read depth at each base pair within the 
locus and a 500-bp region encompassing the start and stop positions 
of the TR. We calculated the average read depth at each base pair and 
defined this as the local read depth. Finally, we calculated the local 
read depth-normalized Anchored IRR value specific to a sample and 
rRE combination by dividing the non-normalized Anchored IRR value 
from EHdn by the local read depth at the locus.

Generation of CABOSEN cells
CABOSEN cells were generated from a cabozantinib-sensitive 
(CABOSEN) human papillary RCC xenograft tumour grown in Rag2–/–

γC–/– mice, as described previously51. Tumour tissue was minced with 
a sterile blade, and the cell suspension was cultured in DMEM/F-12 
medium (Corning) supplemented with 10% (vol/vol) Cosmic calf serum 
(ThermoFisher). Cells were expanded and cryopreserved in growth 
medium supplemented with 10% (vol/vol) DMSO, and cells from pas-
sage 8 were used for analysis.

Analysis of rREs by gel electrophoresis
We performed PCR with CloneAmp HiFi PCR Mix (Takara Biosciences) 
and added DMSO to a final concentration of 5–10% (vol/vol) as needed. A 
list of the primers used to analyse the loci is available in Supplementary 
Table 5. All cell lines tested negative for mycoplasma contamination 
with the MycoAlert Mycoplasma Detection kit (Lonza). Cell line identi-
ties were authenticated through STR profiling by the Genetic Resources 

Core Facility at Johns Hopkins University, with the exception of SNU-
349 cells, which did not match the reported STR profile of SNU-349 
cells or any other catalogued cell line but had a mutated VHL gene and 
expressed high levels of PAX8 and CA9, in line with a clear cell RCC origin.

Visualization of repeat expansions with ExpansionHunter and 
REViewer
To inspect the reads supporting a repeat expansion, we annotated the 
repeat as described on the GitHub page for ExpansionHunter. We then 
profiled the region with ExpansionHunter (v4.0.2) using the default 
settings15. The resulting reads were visualized with REViewer (v0.1.1) 
using the default settings. REViewer is available at https://github.com/
Illumina/REViewer. A repeat expansion was called when the repeat tract 
length for one allele of the tumour sample was greater than 100 bp 
and exceeded the repeat tract length of both normal alleles. A locus 
was considered validated if at least ten cancer genomes had a repeat 
expansion.

Validation of rREs in independent cohorts of samples
Twelve pairs of matching normal and tumour samples from patients 
with clear cell RCC were obtained with the patients’ informed consent 
ex vivo upon surgical tumour resection (Stanford institutional review 
board-approved protocols 26213 and 12597) and analysed. Eighteen and 
15 pairs of matching normal and tumour samples for prostate and breast 
cancer, respectively, were obtained from the Tissue Procurement Shared 
Resource facility at the Stanford Cancer Institute and analysed. These 
samples were obtained with patients’ informed consent (Stanford insti-
tutional review board-approved protocols 11977 and 55606). Nucleic 
acid was isolated with either the Quick Microprep Plus kit (D7005) or 
the Zymo Quick Miniprep Plus kit (D7003) (Zymo Research). Gel elec-
trophoresis was performed as described above. A locus was considered 
detected if a somatic repeat expansion was identified in at least one 
patient tumour sample compared with a matching normal sample.

Downsampling analysis
For the downsampling analysis, tumour genomes from RCC samples 
were downsampled from their mean (52×) sequencing depth to 40×, 
30×, 20× and 10× depth with the samtools view command. EHdn was 
run, as described above, for each of the sequencing depths, and the 
Bonferroni-corrected P value was plotted for the rRE in UGT2B7 (GAAA, 
chr4:69929297–69930148).

Benchmarking the local read depth normalization filter
We benchmarked the local read depth filter in silico by observing its 
behaviour with simulated reads. First, we created a reference genome 
containing artificially expanded repeats. We randomly selected ten 
TRs located on chromosome 1 that were shorter than the sequencing 
read length of 100 bp. We artificially expanded these TRs on chromo-
some 1 of GRCh37 with the BioPython Python package (v1.79). Next, 
we used wgsim (v0.3.1-r13) to simulate reads from the reference file 
with the command ‘wgsim -N 291269925 --1 100 --2 100 reference_file.
fasta output.read1.fastq output.read2.fastq’. The number of reads 
(specified by the -N option) was calculated to achieve 30× coverage of 
chromosome 1. The resulting pair of files, hereafter referred to as the 
base fastq files, contained a copy number of 2 for all of the expansions.

To simulate copy number amplification, the read simulation process 
was repeated using reference files that contained only the artificially 
expanded repeats and their surrounding 1,000-bp flanking regions. We 
created ten pairs of fastq files, each with an increasing copy number. We 
specified the copy number by multiplying the number of reads to gen-
erate (wgsim -N option) by the required number. To generate the final 
set of fastq files, we concatenated each pair of copy number-amplified 
fastq files with the base fastq files. The end result was eight pairs of 
fastq files that contained reads for chromosome 1 and copy number 
amplification varying from 2 to 10 of the expanded repeats.

https://docs.icgc.org/pcawg
https://github.com/Illumina/REViewer
https://github.com/Illumina/REViewer
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The base fastq file with a copy number of 2, in addition to the eight 

copy number-amplified fastq files, was aligned to chromosome 1 of 
GRCh37 with bwa-mem (v0.6) with the default options. The resulting 
SAM files were converted to BAM format with samtools (v1.15) using 
the default options. Finally, we ran the EHdn profile command (v0.9.0) 
with the minimum anchor mapping quality set to 50 and maximum 
IRR mapping quality set to 40. Finally, the Anchored IRR values were 
extracted by overlapping the STR coordinates with the de novo repeat 
expansion calls.

Short-read and long-read DNA sequencing
We sequenced the Caki-1 and 786-O cell lines with both short-read 
sequencing (60× sequencing coverage, 150-bp paired-end sequenc-
ing on a NovaSeq 6000 instrument) and long-read sequencing (50× 
sequencing coverage, PacBio HiFi sequencing on a Sequel IIe instru-
ment). We aligned the long reads to GRCh37 with pbmm2 (v1.7.0), using 
the parameters --sort --min-concordance-perc 70.0 --min-length 50. We 
aligned the short reads to GRCh37 with Sentieon (v202112.01) using 
parameters -K 10000000 -M, an implementation of BWA-MEM, and 
analysed the samples with EHdn, as described above. We included 
loci for which at least one sample had an Anchored IRR value of >0 
for further analysis. Anchored IRR values >0 arise when the repeat 
length exceeds the sequencing read length. To benchmark EHdn against 
long-read sequencing data, we manually determined the TR length of 
a given locus in the long-read sequencing data. If the TR length in the 
long-read sequencing data exceeded the short-read sequencing read 
length of 150 bp, we considered that locus to have been confirmed.

The PacBio HiFi data were aligned to GRCh37 with pbmm2 (v1.7.0) 
and visualized at the UGT2B7 locus with Tandem Repeat Genotyper 
(v0.2.0; https://github.com/PacificBiosciences/trgt).

Analysis of rRE loci
To determine whether rREs were associated with any human diseases, 
rREs were mapped to genes with GREAT (v4.0.4, default settings)52. The 
resulting genes were analysed with Enrichr using Jensen Diseases53. 
The output of this analysis is available in Supplementary Table 4. To 
determine whether repeat expansions were associated with MSI-high 
cancers, we obtained data from ref. 3. The percentage of MSI-high 
cancers was obtained for colon adenocarcinoma (COAD), stomach 
adenocarcinoma (STAD), kidney renal cell carcinoma (KIRC), ovarian 
serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), 
head and neck squamous cell carcinoma (HNSC), liver hepatocellular 
carcinoma (LIHC), bladder urothelial carcinoma (BLCA), glioblastoma 
multiforme (GBM), skin cutaneous melanoma (SKCM), thyroid carci-
noma (THCA) and breast invasive carcinoma (BRCA) and compared with 
the number of repeat expansions and the percentage of patients with 
at least one repeat expansion in the corresponding cancer type from 
the PCAWG dataset. We also overlapped cancer genomes containing 
rREs with the microsatellite mutation rate (data available for all but 
157 PCAWG genomes analysed in this study), which we term the STR 
mutation rate, and MSI calls from ref. 28. The association of rREs with 
STR mutation rate was assessed with the two-tailed Wilcoxon rank-sum 
test. The association of rREs with MSI calls was assessed by chi-squared 
test with Yates’ correction.

To determine whether rREs were associated with known mutational 
signatures, we downloaded mutational signatures from the ICGC Data 
Coordination Center (DCC; https://dcc.icgc.org/releases/PCAWG/muta-
tional_signatures/Signatures_in_Samples). We performed multiple 
linear regression for each SBS and DBS signature to identify predictors of 
the number of rREs present in a sample. To choose the predictors, we per-
formed best subset selection on DBS and SBS signatures and included 
age as a possible confounding factor. We used statsmodels (v0.12.2) in 
Python and, specifically, the ordinary least-squares model found in the 
statsmodels.api.OLS module to estimate the coefficients of the selected 
predictors in their corresponding multiple linear regression model54.

To determine whether repeat expansions were associated with a 
difference in cytotoxic activity, we calculated cytotoxic activity as 
previously described for four cancers that had matching RNA-seq 
and WGS data40. For each locus, we compared the cytolytic activity 
for patients with a repeat expansion to that for patients without a 
detected repeat expansion using a Welch’s t test (a two-tailed test) 
with correction for multiple-hypothesis testing (Benjamini–Hoch-
berg FDR q < 0.05). rREs were annotated with genic elements using 
annotatr (v1.18.1)32.

To determine whether rREs were associated with regulatory ele-
ments, we downloaded cCREs33 and mapped them to GRCh37 with 
LiftOver (UCSC) (n = 950,091 after removing 174 outliers)55. We deter-
mined the distance between rREs and cCREs with the bedtools closest 
command (v2.27.1)56 and compared this distance to that for a simple 
repeats catalogue57. To compare the distance to ENCODE cCREs, a 
Welch’s t test was performed.

To determine whether prostate cancer rREs were associated with 
prostate cancer susceptibility loci35, we calculated the distance to three 
sets of loci using the ‘bedtools closest’ command. We calculated the dis-
tance between (1) rREs present in prostate cancer samples and prostate 
cancer susceptibility loci, (2) rREs not present in prostate cancer sam-
ples and prostate cancer susceptibility loci and (3) simple repeats and 
prostate cancer susceptibility loci. To compare the distances between 
these three associations, we performed a Welch’s t test with FDR cor-
rection (Benjamini–Hochberg).

To determine whether rREs were associated with replication tim-
ing, we downloaded Repli-seq replication timing data for seven cell 
lines from the ENCODE website (NCI-H460, T470, A549, Caki2, G401, 
LNCaP and SKNMC)58. We selected regions for which all cell lines had 
concordant signals for analysis (early or late replication designations in 
agreement for each cell line at a given locus). We determined whether 
there was a difference in the distribution of rREs across early- and 
late-replicating regions compared with the simple repeats catalogue 
by using bootstrapping (n = 10,000). We sampled 54 loci (the number of 
rREs present in a concordant replication region) from rREs and simple 
repeats. A Welch’s t test was performed on the bootstrapped samples to 
estimate a P value. We applied FDR correction (Benjamini–Hochberg) 
to the estimated P values. To determine whether rRE status in UGT2B7 
was associated with survival outcome in patients with clear cell RCC 
(TCGA abbreviation, KIRC), we used Welch’s t-test quartile.

To identify motifs enriched and depleted in the rRE catalogue, 
we followed the same method as in the motifscan Python module 
(v1.3.0)59. We compared our rRE catalogue to the simple repeats cata-
logue (TRF) as a control. For each unique motif present, we built a 
contingency table specifying the count of rREs and simple repeats 
with and without the motif. Two one-tailed Fisher’s exact tests were 
applied to the table to test for significance in both directions, that 
is, enrichment and depletion. The ‘stats’ module in the Scipy Python 
package (v1.7.0) was used to conduct the significance test. Because 
multiple-hypothesis tests were performed, we applied FDR correc-
tion (Benjamini–Hochberg) for multiple-hypothesis testing to the P 
values, with a cut-off (FDR) of 0.01.

For the comparison of SNVs in COSMIC genes to rREs, we first divided 
the cancer genomes into two categories: an rRE cohort and a non-rRE 
cohort. The rRE cohort contained all genomes that had at least one 
rRE detected (n = 615), and the non-rRE cohort contained all genomes 
that had no rREs detected (n = 1,897). We then looked at the number 
of donors in the rRE cohort that had at least one mutation in a given 
gene (COSMIC tier 1 genes) i and the number of donors in the non-rRE 
cohort that had at least one mutation in a given gene i with a contin-
gency table. We calculated the P value (Fisher’s exact test) for the sig-
nificance of associating genes with either the rRE or non-rRE cohort. 
This P-value calculation was repeated for all COSMIC genes, using FDR 
at a significance level of 0.05 (Benjamini–Hochberg) to correct for 
multiple-hypothesis testing.

https://github.com/PacificBiosciences/trgt
https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures_in_Samples
https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures_in_Samples


Estimation of expansions in the general population
To estimate the frequency of rREs in the general population, EHdn 
(v0.9.0) was run on 1000 Genomes Project samples60 (n = 2,504) 
(GRCh38) and Medical Genome Reference Bank61 samples (n = 4,010) 
(GRCh37 lifted over to GRCh38).

The genomic coordinates of the 160 rREs (GRCh37) were padded with 
1,000 bp and translated to GRCh38 coordinates with UCSC LiftOver.  
Then, the rRE coordinates (GRCh38) were overlapped with loci from 
the population samples containing Anchored IRR calls. rREs that 
overlapped with matching motifs in the population samples were 
selected for further analysis. We next sought to identify expanded 
rREs in the population samples to quantify their prevalence. To do 
so, we converted their global-normalized Anchored IRR values to be 
comparable to ICGC values. This step was necessary because sequenc-
ing read lengths in the PCAWG dataset are generally 100 bp while the 
read lengths in the 1000 Genomes and Medical Genome Reference 
Bank datasets are 150 bp. Conversion followed the formula (Anchored 
IRR, 100 bp) = 0.5 + 1.5 × (Anchored IRR, 150 bp)16. A sample in the 
population samples was counted as expanded if its Anchored IRR 
value was greater than the 99th percentile of Anchored IRR values 
in the normal samples from the PCAWG dataset, a threshold that 
is comparable to the threshold used to call expansions in tumour 
samples (Extended Data Fig. 4). In future rRE catalogues, for the rare 
instance where the estimated frequency of repeat expansions in the 
population samples is higher than expected, these data could be 
used to further filter rREs to improve the detection of cancer-specific 
repeat expansions.

To compare the length of TRs in normal samples with and without a 
matching rRE in a tumour sample, donors in the Prost-AdenoCA and 
Kidney-RCC cohorts whose data are available for download through 
the Cancer Collaboratory were included (n = 253). We used Expan-
sionHunter (v5.0.0) with the default options to genotype prostate and 
kidney cancer rREs in the normal samples of the selected donors. When 
there were two alleles of an rRE in a sample, both alleles were included 
and treated as distinct data points. For each rRE, we tested whether 
the distribution of genotypes from donors who had an expansion in 
their tumour samples differed from that for donors who did not have 
an expansion. Student’s t test was used to compute P values with FDR 
correction (Benjamini–Hochberg) to adjust for multiple-hypothesis 
testing.

Association of rREs with gene expression
Matching RNA-seq and WGS data were available for Kidney–RCC, 
Ovary–AdenoCA, Panc–AdenoCA and Panc–Endocrine. RNA-seq 
data from these samples were obtained from the DCC (https://dcc.
icgc.org/), and values were converted to transcripts per million 
(TPM). Normalized gene expression (TPM) values were compared 
for samples with and without an rRE (Welch’s t test, with FDR correc-
tion). For isoform analysis, normalized gene expression counts were 
compared for samples with and without a repeat expansion using the 
DESeq2 (v1.32.0) package in R (v4.0.5). We used the DESeq function 
to calculate the log2-transformed fold change for three isoforms of 
the UGT2B7 gene (ENST00000305231.7, ENST00000508661.1 and 
ENST00000502942.1) and performed a Wald test with FDR correc-
tion using the Benjamini–Hochberg procedure (q-value threshold of 
q < 0.01).

Design, synthesis and characterization of Syn-TEFs and 
polyamides
Syn-TEFs and polyamides were designed to target a GAAA repeat 
(Syn-TEF3 and PA3) or a control GGAA repeat (Syn-TEF4 and PA4). 
Syn-TEF3, Syn-TEF4, PA3 and PA4 were synthesized and purified to a min-
imum of 95% compound purity by WuXi Apptec and used without fur-
ther characterization. HPLC conditions for chemical characterization 

were as follows: flow rate of 1.0 ml min–1; solvent A: 0.1% (vol/vol) trif-
luoroacetic acid (TFA) in water; solvent B: 0.075% (vol/vol) TFA in ace-
tonitrile; Gemini column: C18 5 μm 110A 150 × 4.6 mm. Full results of 
characterization can be found in Supplementary Fig. 2.

Treatment of RCC cell lines with Syn-TEFs
Caki-1, 786-O and Caki-2 cells were obtained from the American Type 
Culture Collection (ATCC) and grown in RPMI-1640 with l-glutamine 
(Gibco, 11875093), supplemented with 10% (vol/vol) FBS. A498 and 
ACHN cells were obtained from ATCC and grown in DMEM with glucose, 
l-glutamine and sodium pyruvate (Corning, 10-013-CV), supplemented 
with 10% (vol/vol) FBS. RCC-4 cells were obtained from A. Giacca (Stan-
ford University) and grown in DMEM with glucose, l-glutamine and 
sodium pyruvate (Corning, 10-013-CV), supplemented with 10% (vol/
vol) FBS. Cell line identities were confirmed by STR profiling (Genetic 
Resource Core Facility, Johns Hopkins University) and tested nega-
tive for mycoplasma. Cells were seeded in 96-well plates on day 0. 
On day 1, cells were treated with the indicated molecules. Molecules 
were dissolved in DMSO (vehicle) and added to cells (0.1% (vol/vol) 
final concentration of DMSO). On day 4 (72 h later), relative metabolic 
activity was measured as a proxy for relative cell density, using the Cell 
Counting Kit (CCK-8, Dojindo Molecular Technologies) according to 
the manufacturer’s instructions. Absorbance (450 nm) of cells treated 
with molecules was normalized to that for cells treated with DMSO 
(0.1% (vol/vol)) or with no treatment. Absorbance was measured with 
an Infinite M1000 microplate reader (Tecan).

For microscopy, Caki-1 and 786-O cells were plated on glass-bottom 
96-well plates under standard culture conditions. One day after plat-
ing, medium containing no drug, 50 μM Syn-TEF3 or 50 μM Syn-TEF4 
was added, and the cells were incubated for 72 h at 37 °C. As a control, 
wells that received no treatment were incubated with 70% (vol/vol) 
ethanol for 30 s before staining. Cells were then stained with propid-
ium iodide, Calcein-AM and Hoechst 33342 from the Live-Dead Cell 
Viability Assay kit (Millipore Sigma, CBA415) according to the manu-
facturer’s instructions and immediately imaged at ×10 magnification 
with a 0.17-NA CFI60 objective on a Keyence BZ-X710 microscope. Eight 
fields were measured for each treatment condition, and the experi-
ment was repeated two times. Quantification was conducted using 
FIJI software (release 20220330-1517). For statistical analyses, one-way 
ANOVA adjusted with Bonferroni correction for multiple comparisons 
was conducted with GraphPad Prism (v9.3.1).

Statistics and reproducibility
Data are represented as the mean ± s.e.m. unless stated otherwise. All 
experiments were reproduced at least twice unless stated otherwise. 
Box plots were prepared with matplotlib (v3.4 or v3.6) as follows unless 
stated otherwise: the box extends from the first quartile (Q1 or 25th 
percentile) to the third quartile (Q3 or 75th percentile) of the data, with 
a line at the median. The whiskers extend from the box by 1.5 times the 
interquartile range (IQR). The IQR is the difference between the values 
at Q3 and Q1. Outliers were not plotted to improve clarity. Details on 
how box plots were generated are available at https://matplotlib.org/
stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.
axes.Axes.boxplot.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Access to the PCAWG dataset can be obtained by applying for access 
at https://daco.icgc.org/. WGS data (both short- and long-read DNA 
sequencing) for the 786-O and Caki-1 cell lines have been deposited 
in NCBI with accession PRJNA868795.

https://dcc.icgc.org/
https://dcc.icgc.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.axes.Axes.boxplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.axes.Axes.boxplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.axes.Axes.boxplot
https://daco.icgc.org/
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA868795
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Code availability
The code to filter loci from EHdn, termed TROPIC, is available on 
GitHub at https://github.com/AshwiniS7/TROPIC-Tandem-Repeat- 
Locus-Prioritization-in-Cancer. The code to perform local read depth 
normalization is available on GitHub at https://github.com/rashi-
dalabri/cancer-rre-paper-analysis.
 
51.	 Zhao, H., Nolley, R., Chan, A. M. W., Rankin, E. B. & Peehl, D. M. Cabozantinib inhibits 

tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell 
carcinoma with MET mutation. Cancer Biol. Ther. 18, 863–871 (2017).

52.	 McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. 
Nat. Biotechnol. 28, 495–501 (2010).

53.	 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment 
analysis tool. BMC Bioinformatics 14, 128 (2013).

54.	 Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. 
in Proceedings of the 9th Python in Science Conference (eds van der Walt, S. & Millman, 
J.) 92–96 (SciPy, 2010).

55.	 Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–1006 (2002).
56.	 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 26, 841–842 (2010).
57.	 Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids 

Res. 27, 573–580 (1999).
58.	 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 

genome. Nature 489, 57–74 (2012).
59.	 Sun, H. et al. Quantitative integration of epigenomic variation and transcription factor 

binding using MAmotif toolkit identifies an important role of IRF2 as transcription 
activator at gene promoters. Cell Discov. 4, 38 (2018).

60.	 Altshuler, D. M. et al. An integrated map of genetic variation from 1,092 human genomes. 
Nature 491, 56–65 (2012).

61.	 Pinese, M. et al. The Medical Genome Reference Bank contains whole genome and 
phenotype data of 2570 healthy elderly. Nat. Commun. 11, 435 (2020).

62.	 Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene 
expression. Nature 575, 699–703 (2019).

63.	 Fotsing, S. F. et al. The impact of short tandem repeat variation on gene expression. Nat. 
Genet. 51, 1652–1659 (2019).

64.	 Dillon, L. W. et al. Production of extrachromosomal microDNAs is linked to mismatch 
repair pathways and transcriptional activity. Cell Rep. 11, 1749–1759 (2015).

Acknowledgements This work was supported by NIH grants U2CCA233311 (to M.P.S.) and 
K99HG011467 (to G.S.E.). G.S.E. was also supported by a Stanford Cancer Institute 
Postdoctoral Fellowship from the Ellie Guardino Research Fund. Computational support was 
provided by the Cancer Genomics Cloud (to G.G. and G.S.E.) and an AWS Cloud Research 
Grant (to G.S.E.). G.S.E. thanks P.S. Kim for early advice and encouragement. We thank C. 
Sabatti for advice on statistical analysis, S. O’Connor for preliminary help with data processing, 
K. Van Bortle for advice and L. Vanderploeg and M. Algama for figures. This work was also 
supported by a National Cancer Institute Cancer Center Support Grant (P30CA124435). The 
content is solely the responsibility of the authors and does not necessarily represent the 
official views of the NCI.

Author contributions G.S.E. conceived the study. G.S.E., G.G., A.C.F., J.T.L., M.A.E., M.P.S. and 
M.G. supervised research. G.S.E., G.G., R.A.-A., A.S., E.D., J.P., C.M.B., K.Z., R.K.C.Y. and A.A.E. 
analysed data. G.S.E., C.R.H., L.R., Ananya Vadlakonda, Alekhya Vadlakonda, K.v.K., R.A.K., 
D.A.S., S.M.W. and T.J.M. conducted wet lab experiments. G.S.E. and M.P.S. wrote the 
manuscript with input from all the authors.

Competing interests G.S.E. and M.P.S. are inventors on a patent application describing 
anti-proliferative agents. E.D. and M.A.E. are shareholders and are currently or were formerly 
employed by Illumina and Pacific Biosciences. The other authors declare no competing 
interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-05515-1.
Correspondence and requests for materials should be addressed to Graham S. Erwin,  
Mark Gerstein or Michael P. Snyder.
Peer review information Nature thanks Anthony Hannan, Matthew Disney and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/AshwiniS7/TROPIC-Tandem-Repeat-Locus-Prioritization-in-Cancer
https://github.com/AshwiniS7/TROPIC-Tandem-Repeat-Locus-Prioritization-in-Cancer
https://github.com/rashidalabri/cancer-rre-paper-analysis
https://github.com/rashidalabri/cancer-rre-paper-analysis
https://doi.org/10.1038/s41586-022-05515-1
http://www.nature.com/reprints


Extended Data Fig. 1 | Overview of PCAWG data and analysis with 
ExpansionHunter De Novo. a, Distribution of cancer genomes analysed 
across 29 human cancers in the PCAWG data. b, Distribution of p-values 

following candidate recurrent repeat expansion (rRE) analysis with 
ExpansionHunter Denovo (one-sided Wilcoxon rank-sum test).
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Extended Data Fig. 2 | Benchmarking EHdn. a, Comparison of anchored 
in-repeat reads (IRRs) to long-read sequencing reads. Long-read sequencing 
confirmation rate across all tandem repeats (TRs, motifs 2–20 bp), short TRs 
with motifs from 2–6 bp, and variable number TRs with motifs from 7–20 bp.  
b, Confirmation rate versus number of anchored IRRs. c, Effect of 
downsampling on the identification of the rRE in the intron of UGT2B7 in  
kidney cancer. Tumour genomes from the PCAWG dataset were downsampled 
to the specified number. ExpansionHunter De Novo was run, and the resulting 

Bonferroni-correct p-value is depicted for the given sequencing coverage. 
Corrected p-value from one-sided Wilcoxon rank-sum test with Bonferroni 
correction. d, Estimation of the frequency of repeat expansions in rRE loci in 
the general population. The number of rREs (count) corresponding to each bin 
is plotted on the y-axis. Results are from analysis of 1000 Genomes Project 
samples60 (n = 2,504) (GRCh38) and Medical Genome Reference Bank61 samples 
(n = 4,010).



Extended Data Fig. 3 | Local read depth normalization of recurrent repeat 
expansion (rRE) candidates. a, Examples of read depth before and after local 
normalization. b, Examples of anchored in-repeat read (IRRs) before and after 
local normalization. The read depth for the locus on the left is derived from 
TCGA data, and the read depth for the locus on the right is derived from PCAWG 

data. Q-values were calculated from two-tailed Student’s t-test with FDR 
correction by Benjamini-Hochberg. FDR q-value=4.83e-05 and 0.54 for 
Kidney-RCC and Breast-AdenoCA, respectively (n = 74 Kidney-RCC genomes 
and n = 193 Breast-AdenoCA genomes analyzed). c, Workflow to identify rREs. 
d, Detection rate in an independent cohort of samples.
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Extended Data Fig. 4 | Benchmarking LRDN and EHdn. a,b, Benchmarking 
the local read depth normalization filter (n = 10 loci analysed). c, The anchored 
IRR quotient was calculated as (tumour anchored IRR – normal anchored IRR)/
(normal anchored IRR + 1). Dashed line at 2.5 indicates the threshold for calling 
a locus as a repeat expansion in a cancer genome. d, ExpansionHunter was used 

to estimate repeat sizes from short-read sequencing data, and the results were 
visualized with REViewer (see Methods). The allele with the longest repeat tract 
for normal and tumour samples is shown. The TR is depicted in red, and the 
flanking regions are depicted in blue.



Extended Data Fig. 5 | Association of rREs with genetic features.  
a, Correlation of rREs with MSI-High cancers. b, c, Association of rREs with 
mutational signatures. b, Correlation between DBS2 and the number of rREs 

detected. c, Correlation between DBS2 and the number of rREs detected when 
Lung-SCC data are omitted from the analysis.
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Extended Data Fig. 6 | Distribution of rREs across the genome. a, Distance  
of rREs to the nearest centromere or telomere. b, Distribution of rREs across 
early- and late-replicating regions of the genome. Welch’s t-test (two-tailed, not 
significant). c, Circos plot depicting (from outside to inside) p-value of rREs, 

location of rREs where darker shading indicates the rRE observed across 3 
cancers, early and late replicating regions (yellow and purple, respectively), 
and simple sequence repeats. This plot depicts the overlay between different 
data types and the distribution of rREs across the genome.



Extended Data Fig. 7 | See next page for caption.



Article
Extended Data Fig. 7 | Molecular features of rREs. a, Overlap of rREs with 
other datasets. The fraction of rREs overlapping with other catalogues of TRs 
and genomic instability. From left to right in the figure, recurrently altered 
STRs in cancer (Supplementary Data 14 from ref. 4; PMID: 28585546), 
extrachromosomal circular DNA (ecDNA, circular amplification events from 
Supplementary Table 1; ref. 62; PMID: 31748743), unstable STRs in cancer 
(Supplementary Table 10 from ref. 3; PMID: 27694933), eSTRs (Supplementary 
Data 1; ref. 63; PMID: 31676866), and microDNA (From C4-2, ES2, LNCaP, OVCAR8, 
and PC-3 cells; ref. 64; PMID: 26051933). The PubMed ID for each corresponding 
manuscript is included in the figure. For the overlap of rREs with microDNA, we 
looked at loci that we attempted to detect in an independent cohort of cancer 

samples, and we found that we tested 11 loci. Of the 11 rREs tested, 8 (72%) were 
detected in the independent cohort of cancer samples. b, Distribution of rRE 
motif length across cancer types. b,c, Association of rREs with regulatory 
elements. b, Distance of simple sequence repeats and rREs to the nearest 
candidate cis-regulatory elements (cCREs). Key: promoter-like signature (P), 
proximal enhancer-like signature (p), distal enhancer-like signature (d), DNase-
H3K4me3 (D), and CTCF-only (C). c, Signal tracks depicting rREs near regulatory 
elements (n = 950,091 simple repeats and n = 160 rREs). d, Association between 
rREs in prostate cancer and risk loci in prostate cancer. Signal trace showing an 
rRE detected in prostate cancer and a risk locus for prostate cancer.



Extended Data Fig. 8 | Analysis of cytotoxic activity. a, Analysis of UGT2B7 
GAAA rRE in patients with clear cell RCC. N, normal tissue; T, tumour tissue. For 
gel source data, see Fig. S1. b, UGT2B7 in RCC patients. b, Expression of UGT2B7 
(transcripts per million, TPM) in RCC samples as a function of the detection of 

the rRE in UGT2B7. P value computed with Welch’s t-test (two-tailed. c, Kaplan- 
Meier survival plots of RCC patients stratified by rRE in the intron of UGT2B7.  
P value computed with Welch’s t-test (two-tailed).
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Extended Data Fig. 9 | Association of rREs with cytotoxic activity. P values computed with Welch’s t-test (two-tailed) with FDR correction (Benjamini-Hochberg) 
(n = 49 Kidney-RCC genomes and n = 85 Ovary-AdenoCA genomes analysed).



Extended Data Fig. 10 | Syn-TEF treatment of RCC cell lines. a, Quantitation 
of the percentage of propidium iodide-positive cells. P values are from a 
one-way ANOVA adjusted with Bonferroni correction for multiple comparisons. 
Results are mean ± s.e.m. (n = 3 biological replicates, except n = 2 biological 
replicates for Syn-TEF3 in 786-O). b, Live cell microscopy of Caki-1 and 786-O cells 

stained with propidium iodide (red) and Hoechst 33342 (blue). Scale bars,  
100 μm. c, Relative cell density of RCC cell lines following treatment (72 h) with 
compounds (50 μM Syn-TEF or 0.1% DMSO vehicle, as indicated). Results are 
mean ± s.e.m. (ACHN and RCC-4 are n = 4 biological replicates, A498 and Caki-2 
are n = 3 biological replicates).
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