Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

特殊的自由/开源软件il preservation and evolution of the ray-finned fish brain

Abstract

Brain anatomy provides key evidence for the relationships between ray-finned fishes1, but two major limitations obscure our understanding of neuroanatomical evolution in this major vertebrate group. First, the deepest branching living lineages are separated from the group’s common ancestor by hundreds of millions of years, with indications that aspects of their brain morphology—like other aspects of their anatomy2,3—are specialized relative to primitive conditions. Second, there are no direct constraints on brain morphology in the earliest ray-finned fishes beyond the coarse picture provided by cranial endocasts: natural or virtual infillings of void spaces within the skull4,5,6,7,8. Here we report brain and cranial nerve soft-tissue preservation inCoccocephalus wildi, an approximately 319-million-year-old ray-finned fish. This example of a well-preserved vertebrate brain provides a window into neural anatomy deep within ray-finned fish phylogeny.Coccocephalusindicates a more complicated pattern of brain evolution than suggested by living species alone, highlighting cladistian apomorphies1and providing temporal constraints on the origin of traits uniting all extant ray-finned fishes1,9. Our findings, along with a growing set of studies in other animal groups10,11,12, point to the importance of ancient soft tissue preservation in understanding the deep evolutionary assembly of major anatomical systems outside of the narrow subset of skeletal tissues13,14,15.

This is a preview of subscription content,access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The neurocranium, endocast, otoliths and preserved brain ofc . wildi(MANCH: W.12451) based on micro-computed tomography.
Fig. 2: Anatomical correspondence between the preserved brain ofc . wildiand those of extant fishes.
Fig. 3: Major anatomical transformations in actinopterygian brain structure illuminated byCoccocephalus.

Data availability

The fossil described in this study has been deposited in the collections of the Manchester Museum and the extant specimens in the University of Michigan Museum of Zoology. The reconstructed .tiff stack, segmented Mimics file and .ply files forc . wildiare available at Zenodo (https://doi.org/10.5281/zenodo.6560305).

References

  1. Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C.The Central Nervous System of Vertebrates(Springer, 1998).

  2. Friedman, M. The early evolution of ray-finned fishes.Palaeontology58, 213–228 (2015).

    ArticleGoogle Scholar

  3. Giles, S., Xu, G. H., Near, T. J. & Friedman, M. Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes.Nature549, 265–268 (2017).

    ArticleADSCASPubMedGoogle Scholar

  4. 穆迪,r . l .新的鱼类大脑从煤炭沉降问题res of Kansas, with a review of other fossil brains.J. Comp. Neurol.25, 135–181 (1915).

    ArticleGoogle Scholar

  5. Nielsen, E.Studies on Triassic Fishes: Glaucolepis and Boreosomus.1(Reitzel, 1942).

  6. Giles, S. & Friedman, M. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii).J. Paleontol.88, 636–651 (2014).

    ArticleGoogle Scholar

  7. Lu, J., Giles, S., Friedman, M., den Blaauwen, J. L. & Zhu, M. The oldest actinopterygian highlights the cryptic early history of the hyperdiverse ray-finned fishes.Curr. Biol.26, 1602–1608 (2016).

    ArticleCASPubMedGoogle Scholar

  8. Edinger, T. Recent advances in paleoneurology.Prog. Brain Res.6, 147–160 (1964).

    ArticleGoogle Scholar

  9. Ikenaga,T. et al. Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish,Polypterus senegalus.J. Comp. Neurol.530, 1231–1246 (2022).

    ArticleCASPubMedGoogle Scholar

  10. Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod.Nature490, 258–261 (2012).

    ArticleADSCASPubMedGoogle Scholar

  11. Edgecombe, G. D., Ma, X. & Strausfeld, N. J. Unlocking the early fossil record of the arthropod central nervous system.Philos. Trans. R. Soc. B370, 20150038 (2015).

    ArticleGoogle Scholar

  12. Strausfeld, N. J., Ma, X. & Edgecombe, G. D. Fossils and the evolution of the arthropod brain.Curr. Biol.26, R989–R1000 (2016).

    ArticleCASPubMedGoogle Scholar

  13. Pradel, A. et al. Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography.Proc. Natl Acad. Sci. USA106, 5224–5228 (2009).

    ArticleADSCASPubMedPubMed CentralGoogle Scholar

  14. Maldanis, L. et al. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates.eLife5, e14698 (2016).

    ArticlePubMedPubMed CentralGoogle Scholar

  15. Trinajstic, K. et al. Exceptional preservation of organs in Devonian placoderms from the Gogo Lagerstätte.Science377, 1311–1314 (2022).

    ArticleADSCASPubMedGoogle Scholar

  16. Braford, M. R. Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts.Brain Behav. Evol.74, 56–76 (2009).

    ArticlePubMedGoogle Scholar

  17. Briscoe, S. D. & Ragsdale, C. W. Evolution of the chordate telencephalon.Curr. Biol.29, R647–R662 (2019).

    ArticleCASPubMedGoogle Scholar

  18. Nieuwenhuys, R. The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary.Brain Struct. Funct.215, 141–157 (2011).

    ArticlePubMedGoogle Scholar

  19. Nelson, J. S., Grande, T. C. & Wilson, M. V. H.Fishes of the World(John Wiley & Sons, 2016).

  20. Jarvik, E.Basic Structure and Evolution of Vertebrates(Academic, 1980).

  21. Clement, A. M., Nysjö, J., Strand, R. & Ahlberg, P. E. Brain–endocast relationship in the Australian lungfish,Neoceratodus forsteri, elucidated from tomographic data (Sarcopterygii: Dipnoi).PLoS ONE10, e0141277 (2015).

    ArticlePubMedPubMed CentralGoogle Scholar

  22. Clement, A. M., Challands, T. J., Long, J. A. & Ahlberg, P. E. The cranial endocast ofDipnorhynchus sussmilchi(Sarcopterygii: Dipnoi) and the interrelationships of stem-group lungfishes.PeerJ4, e2539 (2016).

  23. Dutel, H. et al. Neurocranial development of the coelacanth and the evolution of the sarcopterygian head.Nature569, 556–559 (2019).

    ArticleADSCASPubMedGoogle Scholar

  24. Coates, M. I. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians.Philos. Trans. R. Soc. B354, 435–462 (1999).

    ArticleGoogle Scholar

  25. Poplin, C. M.Etude de Quelques Paleoniscides Pennsylvaniens du Kansas(Cahiers de Paléontologie, Editions du CNRS, 1974).

  26. Hamel, M.-H. & Poplin, C. The braincase anatomy ofLawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (USA).J. Vertebr. Paleontol.28, 989–1006 (2008).

    ArticleGoogle Scholar

  27. Giles, S., Rogers, M. & Friedman, M. Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii).J. Morphol.279, 426–440 (2018).

    ArticlePubMedGoogle Scholar

  28. Latimer, A. E. & Giles, S. A giant dapediid from the Late Triassic of Switzerland and insights into neopterygian phylogeny.R. Soc. Open Sci.5, 180497 (2018).

    ArticleADSPubMedPubMed CentralGoogle Scholar

  29. Argyriou, T. et al. Internal cranial anatomy of Early Triassic species of †Saurichthys(Actinopterygii: †Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms.BMC Evol. Biol.18, 161 (2018).

    ArticlePubMedPubMed CentralGoogle Scholar

  30. Gignac, P. M. et al. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.J. Anat.228, 889–909 (2016).

    ArticleCASPubMedPubMed CentralGoogle Scholar

  31. Pradel, A., Maisey, J. G., Mapes, R. H. & Kruta, I. First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase ofLawrenciellaPoplin, 1984 from the Carboniferous of Oklahoma.Geodiversitas38, 489–504 (2016).

    ArticleGoogle Scholar

  32. Coates, M. I. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania.黑旋风。J. Linn. Soc.122, 27–59 (1998).

    ArticleGoogle Scholar

  33. Smeets, W. J. A. J. inThe Central Nervous System of VertebratesVol. 1–3 (eds Nieuwenhuys, R. et al.) 551–654 (Springer, 1998).

  34. Nieuwenhuys, R. inThe Central Nervous System of VertebratesVol. 1–3 (eds Nieuwenhuys, R. et al.) 939–1006 (Springer, 1998).

  35. Nieuwenhuys, R. inThe Central Nervous System of VertebratesVol. 1–3 (eds Nieuwenhuys, R. et al.) 1007–1043 (Springer, 1998).

  36. Northcutt, R. G. Forebrain evolution in bony fishes.Brain Res. Bull.75, 191–205 (2008).

    ArticlePubMedGoogle Scholar

  37. Morona, R., López, J. M., Northcutt, R. G. & González, A. Comparative analysis of the organization of the cholinergic system in the brains of two Holostean fishes, the Florida garLepisosteus platyrhincusand the bowfinAmia calva.Brain. Behav. Evol.81, 109–142 (2013).

    ArticlePubMedGoogle Scholar

  38. Bjerring, H. C. inEvolutionary Biology of Primitive Fishes(eds Foreman, R. E. et al.) 31–57 (Springer, 1985).

  39. Chandler, A. C. On a lymphoid structure lying over the myelencephalon ofLepisosteus.加州大学出版。黑旋风。9, 85–104 (1911).

    Google Scholar

  40. Fine, M. L., Horn, M. H. H. & Cox, B.Acanthonus armatus, a deep-sea teleost fish with a minute brain and large ears.Proc. R. Soc. Lond. B230, 257–265 (1987).

    ArticleADSCASPubMedGoogle Scholar

  41. Herzog, H., Klein, B. & Ziegler, A. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics.j . r . Soc。接口14, 20160898 (2017).

    ArticlePubMedPubMed CentralGoogle Scholar

  42. Watanabe, A. et al. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?J. Anat.234, 291–305 (2019).

    ArticlePubMedGoogle Scholar

  43. Rowe, T. B., Macrini, T. E. & Luo, Z.-X. Fossil evidence on origin of the mammalian brain.Science332, 955–957 (2011).

    ArticleADSCASPubMedGoogle Scholar

  44. Figueroa, R. T., Friedman, M. & Gallo, V. Cranial anatomy of the predatory actinopterygianBrazilichthys macrognathusfrom the Permian (Cisuralian) Pedra de Fogo Formation, Parnaíba Basin, Brazil.J. Vertebr. Paleontol.39, e1639722 (2019).

    ArticleGoogle Scholar

  45. Striedter, G. F. & Northcutt, R. G. Head size constrains forebrain development and evolution in ray-finned fishes.Evol. Dev.8, 215–222 (2006).

    ArticlePubMedGoogle Scholar

  46. Folgueira, M. et al. Morphogenesis underlying the development of the everted teleost telencephalon.Neural Develop.7, 212 (2012).

    ArticleGoogle Scholar

  47. Schmidt, M. Evolution of the hypothalamus and inferior lobe in ray-finned fishes.Brain Behav. Evol.95, 302–316 (2020).

    ArticlePubMedGoogle Scholar

  48. van der Horst, C. J. The myelencephalic gland ofPolyodon,AcipenserandAmia. K. Akad. Wet. Amst.Proc. Sect. Sci.28, 432–442 (1925).

  49. Northcutt, R. G., Neary, T. J. & Senn, D. G. Observations on the brain of the coelacanthLatimeria chalumnae: External anatomy and quantitative analysis.J. Morphol.155, 181–192 (1978).

    ArticlePubMedGoogle Scholar

  50. White, E. G.A Classification and Phylogeny of the Elasmobranch FishesAmerican Museum Novitates 837 (American Museum of National History, 1936).

  51. Lankester, E. R. & Ridewood, W. G.Guide to the Gallery of Fishes(British Museum, 1908).

  52. Watson, D. M. S. The structure of certain palaeoniscids and the relationships of that group with other bony fish.Proc. Zool. Soc. Lond.95, 815–870 (1925).

    ArticleGoogle Scholar

  53. Poplin, C. M. & Véran, M. A revision of the actinopterygian fishCoccocephalus wildifrom the Upper Carboniferous of Lancashire.Spec. Pap. Palaeontol.52, 7–29 (1996).

    Google Scholar

  54. Coates, M. I. & Tietjen, K. ‘This strange little palaeoniscid’: a new early actinopterygian genus, and commentary on pectoral fin conditions and function.Earth Environ. Sci. Trans. R. Soc. Edinb.109, 15–31 (2018).

    Google Scholar

  55. Hough, E.Geology of the Burnley area (SD82NW and SD83SW)(British Geological Survey, 2004).

  56. Waters, C. N. et al.A Revised Correlation of Carboniferous Rocks in the British Isles(Geological Society of London, 2011).

  57. Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.Nat. Commun.7, 10320 (2016).

    ArticleADSCASPubMedPubMed CentralGoogle Scholar

  58. Cherns, L. et al. Correlative tomography of an exceptionally preserved Jurassic ammonite implies hyponome-propelled swimming.Geology50, 397–401 (2021).

    ArticleADSGoogle Scholar

  59. Sansom, R. S., Gabbott, S. E. & Purnell, M. A. Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation.Palaeontology56, 457–474 (2013).

    ArticleGoogle Scholar

  60. Sansom, R. S., Gabbott, S. E. & Purnell, M. A. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record.Proc. R. Soc. B278, 1150–1157 (2011).

    ArticlePubMedGoogle Scholar

  61. Sansom, R. S. & Wills, M. A. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees.Sci. Rep.3, 2545 (2013).

    ArticleADSPubMedPubMed CentralGoogle Scholar

Download references

Acknowledgements

We thank D. Gelsthorpe and L. Loughtman for access to collections; R. Nagesan and R. Singer for assistance with extant material; L. Simonitis and K. Hall for providing comparative material ofSqualus; A. Capobianco, J. Díaz-Cruz and C. Mauricio Peredo for providing feedback on an earlier version of this contribution; and R. Dearden for assisting with Blender. S.G. was supported by a Royal Society Dorothy Hodgkin Research Fellowship (DH160098). This study includes data produced at the CTEES facility at University of Michigan, supported by the Department of Earth and Environmental Sciences and College of Literature, Science and the Arts.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by M.F. and S.G. CT scanning was performed by M.F. and R.T.F., with staining of extant material by R.T.F. and M.A.K. Segmentation of CT data was performed by M.F., S.G., D.G. and R.T.F.; M.F, S.G. and R.T.F wrote the manuscript, with comments from all of the authors.

Corresponding authors

Correspondence toMatt FriedmanorSam Giles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Naturethanks Hugo Dutel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note设圈套r Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The brain (red) and myelencephalic sheet/gland (pink) ofCoccocephalus wildiand selected extant ray-finned fishes.

a,Coccocephalus wildi.b,Acipenser brevirostrum.c,Amia calva.d,Polypterus senegalus. Grey and white delimitations show margins between forebrain, midbrain and hindbrain across all taxa. Brains are shown in dorsal view and aligned at the anterior- and posteriormost points of the forebrain (olfactory bulbs, telencephalon and diencephalon) and the posteriormost point of the fourth ventricle. Scale bar = 5 mm.

Extended Data Fig. 2 Sections through the brain ofCoccocephalus wildi.

a, transverse section through the anterior portion of the telencephalon.b, horizontal section through the ventral portion of the telencephalon.c, transverse section through the posterior portion of the telencephalon.d, horizontal section through the dorsal portion of the telencephalon.e, transverse section through the anterior portion of the hypothalamus inferior lobes.f, transverse section through the posterior portion of the hypothalamus inferior lobes. Inset shows where each of sections (a)-(e) intersect the brain. h.inf, inferior lobe of the hypothalamus; l.hyp.re, lateral hypothalamic recess; tel, telencephalon; tel.sept, telencephalic septum. Scale bar = 2 mm.

Extended Data Fig. 3 Transverse sections and renders of the brain ofCoccocephalus wildi.

a,b, the telencephalon.c,d, the mesencephalon and hypophysis. cce, corpus cerebellum; h.inf, inferior lobe of the hypothalamus; hyp, hypophysis; tel, telencephalon; mes, mesencephalon; ms, mesencephalic sheet; v. tr?, velum transversum; 4thv, fourth ventricle; II, optic nerve; III, oculomotor nerve; IV, trochlear nerve, V, trigeminal nerve; VII, facial nerve. Dorsal portion of forebrain and velum transversum digitally removed. Scale bar in a, c = 2.5 mm; scale bar in b, d = 2 mm.

Extended Data Fig. 4 Sections through the brain ofCoccocephalus wildiandAmia calva.

a, transverse section through the diencephalon and mesencephalon ofCoccocephalus wildi.b, transverse section through the diencephalon and mesencephalon ofAmia calva. l.hyp.re, lateral hypothalamic recess. Scale bar = 2 mm.

Extended Data Fig. 5 Sagittal sections through the neurocranium ofCoccocephalus wildishowing the brain and associated structures.

cce, corpus cerebelli, cr.c; crista cerebellaris, h.inf, hypothalamus inferior lobes; hyp, hypophysis; mes, mesencephalon; ms, myelencephalic sheet; rho, rhombencephalon; sc, spinal cord; tel, telencephalon; v.tr, velum transversum; 2ndv, second ventricle; 4thv, fourth ventricle; I, olfactory nerve; II, optic nerve. Scale bar = 5 mm.

Extended Data Fig. 6 The brain ofCoccocephalus wildi(red) rendered partially transparent to show brain ventricle configuration (white).

a, dorsal view.b, left lateral view. die. v, diencephalic ventricle; 2ndv, second ventricle; 4thv, fourth ventricle. Scale bar = 5 mm.

Extended Data Fig. 7 Sections through the brain ofCoccocephalus wildishowing the rhombencephalic region.

a, sagittal section through the brain.b, transverse section through the anterior portion of the rhombencephalon.c,通过和中脑的水平截面rhombencephalic regions of the brain. cce, corpus cerebelli, crc, crista cerebellaris, inv, invagination of the cerebellum, 4thv, fourth ventricle. Scale bar = 1 mm.

Extended Data Fig. 8 The brain ofCoccocephalus wildiwithin the endocavity.

a, dorsal view,b, left lateral view. d.lat, dorsal lateral line nerve, hyo.VII, hyomandibular branch of the facial nerve, hyp, hypophysis, ms, mesencephalic sheet, I, olfactory nerve, II, optic nerve, IV, trochlear nerve, V, trigeminal nerve, VI, abducens nerve, VII, facial nerve, IX, glossopharyngeal nerve, X, vagus nerve. Scale bar = 5 mm.

Supplementary information

Supplementary Information

Document (PDF) including additional text detailing: phylogenetic placement of ✝Coccocephalus wildi; potential paths for the fossilization of brain tissues; CT scanning parameters for all specimens (Supplementary Table 1); and Supplementary References.

Reporting Summary

Supplementary Data

Annotated surface file (HTML) of the segmented brain of ✝Coccocephalus wildi. For visualization open file with a web browser. Produced with Blender 2.79 “Blend4Web” extension.

Supplementary Video 1

Supplementary Video (MP4) illustrating the transverse sections through the brain of ✝Coccocephalus wildi, highlighting the telencephalic septum.

Rights and permissions

设圈套r Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figueroa, R.T., Goodvin, D., Kolmann, M.A.et al.特殊的自由/开源软件il preservation and evolution of the ray-finned fish brain.Nature614, 486–491 (2023). https://doi.org/10.1038/s41586-022-05666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:https://doi.org/10.1038/s41586-022-05666-1

This article is cited by

Comments

By submitting a comment you agree to abide by ourTermsand社区指导原则. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for theNature Briefingnewsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
Baidu
map