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Quantum-well states at the surface of a 
heavy-fermion superconductor

Edwin Herrera1,2,3 ✉, Isabel Guillamón3, Víctor Barrena3, William J. Herrera2, 
Jose Augusto Galvis1,4, Alfredo Levy Yeyati5, Ján Rusz6, Peter M. Oppeneer6, Georg Knebel7, 
Jean Pascal Brison7, Jacques Flouquet7, Dai Aoki8 & Hermann Suderow3 ✉

Two-dimensional electronic states at surfaces are often observed in simple wide-band 
metals such as Cu or Ag (refs. 1–4). Confinement by closed geometries at the nanometre 
scale, such as surface terraces, leads to quantized energy levels formed from the 
surface band, in stark contrast to the continuous energy dependence of bulk electron 
bands2,5–10. Their energy-level separation is typically hundreds of meV (refs. 3,6,11).  
In a distinct class of materials, strong electronic correlations lead to so-called heavy 
fermions with a strongly reduced bandwidth and exotic bulk ground states12,13. 
Quantum-well states in two-dimensional heavy fermions (2DHFs) remain, however, 
notoriously difficult to observe because of their tiny energy separation. Here we use 
millikelvin scanning tunnelling microscopy (STM) to study atomically flat terraces on 
U-terminated surfaces of the heavy-fermion superconductor URu2Si2, which exhibits  
a mysterious hidden-order (HO) state below 17.5 K (ref. 14). We observe 2DHFs made of 
5f electrons with an effective mass 17 times the free electron mass. The 2DHFs form 
quantized states separated by a fraction of a meV and their level width is set by the 
interaction with correlated bulk states. Edge states on steps between terraces appear 
along one of the two in-plane directions, suggesting electronic symmetry breaking at 
the surface. Our results propose a new route to realize quantum-well states in strongly 
correlated quantum materials and to explore how these connect to the electronic 
environment.

Heavy fermions form a unique class of quantum materials that exhibit 
exceptional properties related to their narrow electronic-band  
dispersion12. Previous experiments on heavy fermions showed that 
reducing the dimensionality leads to enhanced electronic correla-
tions and strong coupling superconductivity15,16. Furthermore, narrow 
surface bands with a Dirac dispersion were found in a semiconducting 
heavy fermion17. In spite of intensive investigations, 2DHFs have not 
been observed at surfaces of superconducting compounds and no 
quantum-well states owing to lateral confinement of heavy electron 
states have been realized.

We investigate the heavy-fermion superconductor URu2Si2, which 
exhibits correlated narrow electron bands crossing the Fermi level 
and undergoes a transition to the HO phase characterized by an as yet 
unknown order parameter14. A partial gap opens in the electronic band 
structure below THO = 17.5 K, out of which an unconventional super-
conducting state develops below Tc = 1.5 K (refs. 14,18). The surface elec-
tronic states observed until now mostly have small effective masses19–22. 
Using STM to investigate small-sized, atomically flat terraces on the 
U-terminated surface of URu2Si2 at sub-kelvin temperatures, we observe 
clearly 2DHFs with an effective mass 17 times the free electron mass, 

as well as quantization owing to lateral confinement and uncover the 
surface–bulk interaction. In Fig. 1a, we present a STM image of terraces 
of U-terminated surfaces on URu2Si2 (see Extended Data Fig. 1 for the 
surface termination). Our starting point is the tunnelling conductance 
obtained in a small range of a few mV around the Fermi level and at a 
temperature of 0.1 K, well below the superconducting critical tem-
perature, shown in Fig. 1b (see Extended Data Fig. 2 for a larger bias 
voltage range).

Quantum-well states by confinement
We focus on the tunnelling conductance along the white line shown 
in Fig. 1a. Along this line, we identify four terraces of different sizes, 
L1 ≈ 2 nm, L2 ≈ 5.5 nm, L3 ≈ 20 nm and L4 ≈ 38.5 nm (Fig. 1c). We observe 
a strong bias voltage and position dependence of the tunnelling  
conductance, which is different for each terrace as illustrated in Fig. 1d. 
We show in Fig. 1e representative tunnelling conductance curves at 
each terrace, in which we identify a set of regular peaks.

Let us analyse the terrace L3 (dashed rectangle in Fig. 1a). We present a 
symmetrized map of the tunnelling conductance in Fig. 2a (see Methods 
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for further details). We identify a set of peaks in the tunnelling conduct-
ance, which evolve in both position and bias voltage. Subtracting the 
features at ε− and ε+ (details provided in Methods and in Extended Data 

Figs. 3 and 4), we obtain the pattern shown in Fig. 2b, which shows the 
lateral quantization of 2DHFs. The quantization pattern for confined 
electrons resembles the Fabry–Pérot expression for an interferometer 
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Fig. 1 | Tunnelling conductance on URu2Si2 terraces. a, STM topography image 
of several U-terminated terraces on URu2Si2, cleaved perpendicular to the c axis. 
The distance between terraces is c/2, that is, half a unit cell. The inset shows  
a zoom into the region at the white square and reveals the square U atomic 
surface lattice (arrows indicate the in-plane crystalline directions). The dashed 
rectangle represents the field of view on which we focus in Fig. 2. More details 
about the surface termination is provided in Methods and in Extended Data Fig. 1. 

Scale bars, 20 nm (main), 1 nm (inset). b, Tunnelling conductance averaged  
along the white line in a. The dashed lines provide the features at ε−, ε+ and the 
superconducting gap discussed in the Methods. c, Height profile normalized to 
the c-axis lattice constant along the white line in a, indicating terraces L1 to L4.  
d, Tunnelling conductance versus distance along the white line in a. e, Tunnelling 
conductance curves at different terraces. The arrows mark the positions of 
peaks arising from quantization due to lateral confinement. Data taken at 0.1 K.
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Fig. 2 | 2DHFs and electron-in-a-box quantization. a, Tunnelling conductance 
at the L3 terrace is shown by a colour scale as a function of the distance (taken at 
0.1 K). b, The same data as in a but with a subtracted background (see Methods 
and Extended Data Fig. 3). The white dots in a and b mark the position of peaks 
in the conductance. The black arrow shows the width of the quantized levels,  
Γ, described in the text. c, Points show the reciprocal space position of the  
white dots in a and b. The magenta line provides the electron dispersion 
relation with m* = 17m0. d, The lines show calculations and coloured points  
the measured tunnelling conductance. e, The dashed blue line shows the 

reflection coefficient r obtained in Cu(111) (see Methods). The continuous blue 
line is the calculated r assuming m* = 17m0. Points are the results obtained from 
the experiment. f, Tunnelling conductance as a function of the bias voltage is 
shown by blue circles at the centre of the terrace in b. The dashed blue line is for 
perfect reflection, r ≈ 1, and the continuous line for r ≈ 0.4. g, Points show the 
lifetime of the quantum-well states, τ, as a function of the bias voltage. The 
dashed blue line is the expectation for a two-dimensional electron gas and the 
continuous line describes quantum states whose width is set by their interaction 
with the heavy quasiparticles of the bulk.
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made by partially reflecting mirrors23 (reflection coefficient r and the 
phase shift ϕ are the free parameters; details in Extended Data Fig. 4 
and results on different terraces in Extended Data Fig. 5). Lateral quan-
tization results from interfering wavefunctions partially reflected at 
steps. Quantized levels obtained from the Fabry–Pérot expression 
are the white dots in Fig. 2a,b, whose position coincides well with the 
peaks in the conductance pattern observed in the experiment. In 
Fig. 2c, we plot as points the position of the peaks as a function of the 
wavevector k and as a line the dispersion relation E = E0 + ħ2k2/(2m*), in 
which m* is the effective mass and E0 the bottom of the band. We obtain 
E0 = −2.3 meV and m* = 17m0, with m0 the free electron mass, that is, we 
find that the 2DHF is derived from a massive surface electron state.  
A detailed comparison of the tunnelling conductance versus position 
with the square of wavefunctions confined by a lateral potential leads 
to excellent fits, shown in Fig. 2d. The phase shift ϕ determines the 
position and energy of the peaks (white dots in Fig. 2a,b) and the best 
account of our observations is obtained with ϕ = −π. We find values 
around r ≈ 0.2, which slightly increase when approaching E0 (Fig. 2e). 
The low value of r is also found in surface states of simple metals; for 
example, r is between 0.2 and 0.4 in Ag and Cu (refs. 23–25). However, 
the energy dependence (Fig. 2e) at the surface of URu2Si2 is completely 
different to that in usual metals. Although r varies mildly in Cu or Ag 
in the range of a few eV (see dashed line in Fig. 2e and refs. 23–25), here 
we observe instead that r decreases markedly in a range of a few meV 
(points in Fig. 2e). We can reproduce the observed dependence of r 
versus bias voltage assuming a potential well23,24 (continuous line in 
Fig. 2e; details provided in Methods and Extended Data Figs. 3 and 4). 
It is also insightful to trace the tunnelling conductance as a function of 
the bias voltage at the centre of the terrace in Fig. 2b (circles in Fig. 2f) 
and compare it to the expectation for r ≈ 1 (dashed line in Fig. 2f) and for 
r ≈ 0.4 (continuous line in Fig. 2f). We see that, for a reduced r, both the 
periodicity and shape of the tunnelling conductance are well explained 
in an energy range of a few meV, that is, two orders of magnitude below 
the energy range observed in conventional metals1–4,23–26.

To further investigate the quantized levels, we have fitted each peak 
to a Lorentzian function, whose width Γ (black arrow in Fig. 2b) provides 
the lifetime τ (Fig. 2g) of the quantum-well states. Taking a two- 
dimensional electron gas, we expect ħ τ E π E E E/ = Γ + ( /4 )[( + )/ ]0 0 0 0

2∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣E E E q kln ( + )/ − ln(2 / ) − 1/20 0 TF F , with ħ the reduced Planck’s constant, 

qTF = 0.0906 Å−1 the Thomas–Fermi screening length and kF the Fermi 
wavevector27 (dashed line in Fig. 2g). Our data are not well reprodu
ced by this expression. Taking instead ħ τ E π E E E/ = Γ + ( /4 )[( + )/ ]0 0 0 0

2∣ ∣ ∣ ∣   
with E0 = −2.3 meV and Γ0 ≈ 60 μeV (continuous line in Fig. 2g), we find 
a much better account of our data27,28. The latter expression takes into 
account the connection between the 2DHF and bulk states, showing 
that, in our experiments, the lifetime τ is set by the decay of the 2DHF 
into heavy-fermion bulk states. Quantum-well states sense the bulk 
correlations, given by the quadratic energy term in ħ/τ. This has been 
observed in surface states of noble metals, monolayers of Pb and in Sb. 
However, in those cases, the energy range was three orders of magni-
tude above the one we discuss here3,6,11,28.

From the obtained value of Γ0 ≈ 60 μeV, we estimate the lifetime of 
the ground state as τ0(E0 = −2.3 meV) = ħ/Γ0 ≈ 11 ps. Similarly, the life-
time of states close to the Fermi level is τ(E = 0) = ħ/Γ(E = 0) ≈ 3 ps. We 
can also estimate a value for a mean free path, ℓ0 = vFħ/Γ(0) ≈ 0.14 μm, 
with vF the Fermi velocity of URu2Si2. This value is on the same order 
of magnitude as those observed in ultraclean URu2Si2 single crystals29.

To vindicate the existence of a heavy-fermion surface state, we per-
formed density functional theory calculations of the surface band 
structure of a slab of URu2Si2 (Extended Data Fig. 6). We find a shal-
low, U-derived f-electron band with a flat dispersion relation compat-
ible with our experiments around the X point of the simple tetragonal 
Brillouin zone. The bulk electronic spectrum is gapped in this part of 
the Brillouin zone21,22. The rest of the Brillouin zone provides surface 
states with much smaller effective masses.

One-dimensional edge states
In Fig. 3, we show that the 2DHF is peculiarly modified at the steps 
separating terraces at which one-dimensional edge states (1DESs) 
appear. 1DESs were previously observed in simple metals, in which a 
gap opens at the step and is filled with a very large density of states at 
E1DES by the 1DES3,8,11,24,25,30. The width of the conductance peak at E1DES, 
η1DES, results from inelastic scattering into bulk states24,25. Here we find 
that the features in the tunnelling conductance completely change at 
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Fig. 4 | Superconductivity in the 2DHF. a, Tunnelling conductance versus bias 
voltage at zero field (red) and at 4 T (green). The fit at zero magnetic field is 
shown by the black line. The superconducting gap, ΔSC, is marked by an arrow. 
b, Tunnelling conductance versus temperature at zero field. The curves are 
shifted for clarity. The lines are fits to the model. c, Temperature dependence 
of the superconducting gap, ΔSC(T), is shown as black points. The BCS 
temperature dependence (line) is shown as a guide.
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dashed black line is a fit and the horizontal arrow marks the width of the 1DES, 
η1DES (more details in Methods and Extended Data Fig. 7).
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a step (Fig. 3a,b). We find a high peak at E1DES ≈ −0.38 meV (Fig. 3b,c) in 
steps, but notably only along one of the two equivalent in-plane axes, 
that is, an in-plane symmetry breaking occurs. The HO is known to 
cause breaking of the body-centred translation symmetry14, leading 
to inequivalent electronic properties in subsequent U layers, which is 
consistent with our measurements (details in Methods and Extended 
Data Fig. 7). This should reduce inelastic scattering and favour the 
formation of a 1DES. Here, however, we observe a rather unique situa-
tion in which the edge state is either observed or not, on two crystal-
lographically equivalent in-plane axes. This indicates spontaneous 
symmetry breaking of the fourfold rotational symmetry close to the 
surface. Such in-plane symmetry breaking has been proposed31 for 
bulk URu2Si2 but has been difficult to detect. This symmetry breaking 
would cause an orthorhombicity given by a tiny difference in the basal-
plane lattice constants a and b ( ∣ ∣

≈ 10
a b
a b

−
( + )

−5)32. Other experiments could, 
however, not confirm such in-plane symmetry breaking33, which could 
be favoured by defects. Recent group theory considerations and 
nuclear magnetic resonance (NMR) data propose that the HO state can 
belong to four space groups, #126, #128, #134 and #136, all having the 
same crystal structure as the high-temperature state34. NMR experi-
ments suggest the presence of fourfold symmetry at Ru, Si and U sites, 
narrowing down the most probable choice to #126 (refs. 34,35). Notably, 
although these measurements gave absence of fourfold symmetry 
breaking in bulk URu2Si2, our STM data sensitive to individual uranium 
layers clearly show an in-plane symmetry breaking in the 1DES. We note 
that a possible source of changes in the electronic structure that could 
also affect the 1DES is modifications of the valence of U edge atoms21. 
Nonetheless, the symmetry-breaking in the 1DES suggests a deeper 
origin, which pinpoints that the 1DES serves as a sensitive probe of 
fundamental electronic properties of the near-surface U lattice.

Superconductivity
At the energy range below the superconducting gap, ΔSC ≈ 200 μeV, we 
observe that there is a large zero-bias conductance (see Fig. 4a). There 
are indications for unconventional superconductivity in bulk URu2Si2, 
with a d-wave symmetry order parameter29. This can contribute to the 
suppression of the superconducting features in the tunnelling con-
ductance, but it hardly leads to the zero-bias conductance observed 
in our experiment. Similar small-sized superconducting features are 
found in other heavy-fermion superconductors, such as CeCoIn5 or 
UTe2, and remain difficult to explain36–38. Most notably, macroscopic 
measurements such as specific heat or thermal conductivity provide, 
in all these systems, a negligible zero-temperature extrapolation of 
the electronic density, suggesting that the superconducting density 
of states at the Fermi level is very small12. The 2DHF is strongly coupled 
to the superconducting bulk states and the proximity effect from bulk 
superconductivity should provide only a small amount of states at 
low energies. However, it is important to consider the coupling of the 
2DHF to strongly energy-dependent resonant states giving peaks in 
the tunnelling conductance as well. The concomitant broadening then 
leads to a large zero-bias tunnelling conductance. Using a model that 
takes this into account (see Methods and Extended Data Fig. 8), we can 
understand the main features of the tunnelling conductance and follow 
the superconducting gap with temperature (Fig. 4b,c). This solves the 
discrepancy between macroscopic and surface experiments and shows 
the relevance of two-dimensional electronic states to understanding 
the tunnelling conductance.

In summary, we have observed 2DHFs in terraced surfaces inside 
the HO phase of URu2Si2. The 2DHF exhibits quantum-well states with 
energy separation of fractions of a meV when confined between steps. 
The 2DHF is connected to the bulk heavy-fermion states. At steps, we 
observe a 1DES, which shows in-plane electronic symmetry breaking 
and inequivalent electronic arrangement in subsequent U layers in the 
HO phase. The discovery of 2DHFs and related confined states opens 

new possibilities to study the interplay of quantized heavy-fermion 
states and unconventional superconductivity, as several heavy-fermion 
materials show unconventional superconductivity in the bulk, often 
coexisting with other long-range ordered phases. Apart from URu2Si2, 
there are other heavy fermions, such as CeCoIn5, UBe13, UPt3 or UTe2, 
in which the proposed superconducting states are spin-singlet d-wave 
or spin-triplet p-wave and f-wave states. These could exhibit 2DHFs 
and the associated edge states could incorporate excitations with 
unique properties such as Majorana fermions following non-Abelian 
statistics. Furthermore, because the source of quantization is lateral 
confinement, correlated quantum-confined states can be obtained in 
nanostructures built on the surface by manipulation of adatoms or by 
controlling layer growth in thin films15,16,39,40. This opens new avenues 
to generate, isolate and manipulate excitations in unconventional 
superconductors.
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Methods

STM experiments
Single crystals of URu2Si2 were grown by the Czochralski technique in 
a Tetra Arc Furnace. We scanned samples for a low residual resistivity 
and a high superconducting critical temperature, close to 1.5 K. Such 
samples were then cut in a bar shape with dimensions 4 × 1 × 1 mm3, 
with the long distance parallel to the c axis. We mounted the samples 
on the sample holder of a scanning tunnelling microscope. The scan-
ning tunnelling microscope was mounted in a dilution refrigerator. 
The resolution in energy of the setup was tested by measuring the 
superconducting tunnelling conductance with the tip and sample 
of s-wave superconductors Al and Pb down to 100 mK (ref. 41). Details 
of image-rendering software are provided in refs. 42,43. The scanning 
tunnelling microscope head features a low-temperature movable 
sample holder, which is used to cleave the sample at cryogenic tem-
peratures41,44. At the same time, and importantly for this study, the 
sample holder allows modifying many times the scanning window. The 
terraces discussed in this work were found in three different samples, 
after studying hundreds of fields of view.

Surface termination in URu2Si2

We focus on U-terminated surfaces. In Extended Data Fig. 1a, we show 
the URu2Si2 crystal unit cell highlighting the U, Si and Ru planes; their 
inter-layer distances are indicated in units of the c-axis lattice param-
eter. In Extended Data Fig. 1b–d, we show STM images corresponding 
to different surface terminations. These surfaces are all obtained after 
cryogenic cleaving. On the surfaces full of square-shaped terraces, 
we find the results obtained in the main text. An example is shown 
in Extended Data Fig. 1b. All the observed terraces are separated by 
c/2 ≈ 4.84 Å. In Extended Data Fig. 1c,d, we show terraces with a trian-
gular shape, in which we do not observe the phenomena discussed in 
the main text. Here the distance between consecutive terraces is about 
0.11c, about 0.39c or about 0.61c, which correspond, respectively, to 
the three possible distances between U–Si planes (coloured arrows in 
Extended Data Fig. 1a). Therefore, we see that the surfaces with terraces 
having a triangular shape correspond to Si layers, sometimes with 
a U layer in between. By contrast, the surfaces with terraces having 
a square shape are U terminated. Atomically resolved images inside 
terraces (Extended Data Fig. 1e) provide the square atomic U lattice 
with an in-plane constant lattice of a = 4.12 Å . In Extended Data Fig. 1f, 
we show a typical atomic-sized image on Si-terminated surfaces. We 
do not observe atomic resolution and have sometimes seen circular 
defects. Defects in the U-terminated surfaces are very different, as 
shown in Extended Data Fig. 1g–o. We distinguish two distinct types 
of defect. The defects can be either point-like protrusions (Extended 
Data Fig. 1g,h) or troughs (Extended Data Fig. 1i). Sometimes, defects 
are arranged in small-sized square or rectangular structures (Extended 
Data Fig. 1j–o). Most of these defects are probably because of vacancies 
or interstitial atoms in layers below the U surface layer.

Tunnelling conductance in the HO state
The tunnelling conductance of the HO state has been discussed 
in refs. 45–49. We have reproduced the results, as shown in Extended 
Data Fig. 2a,b. The tunnelling conductance results from simultane-
ous tunnelling into heavy and light bands, as in other heavy-fermion  
compounds50–52. The red line in Extended Data Fig. 2a for T = 18 K  
follows a Fano function

g E A
q E E

E E
( ) =

( + ( − )/Γ )
( − )/Γ + 1

, (1)Fano F
2

Fano F

in which A is a constant of proportionality, q is the ratio between two 
tunnelling paths and EFano is the Fano resonance energy with width 

πk T k TΓ = 2 ( ) + 2( )F B
2

B K
2 , TK being the Kondo temperature45,46. For the 

fit, we include an asymmetric linear background owing to the degree 
of particle–hole asymmetry in the light conduction band45,53. To 
account for the thermal broadening, we convolute the result with the 
derivative of the Fermi–Dirac distribution. We find q = 0.8 ± 0.5, 
EFano = 3 ± 1 mV, ΓF = 22 ± 1 mV and TK = 90 ± 5 K, consistent with previous 
reports45,46.

Inside the HO phase (red line in Extended Data Fig. 2b), we use the 
same Fano function, multiplied by an asymmetric BCS-like gap func-
tion with an offset δE





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The resulting function is convoluted with the derivative of the Fermi–
Dirac distribution function. We find δE(4.1 K) = 1.5 ± 0.5 meV and 
ΔHO(4.1 K) = 4.0 ± 0.5 meV, consistent with previous reports45,46.

Note that we also observe further features at lower temperatures and 
smaller bias voltages (Extended Data Fig. 2c). The red line in Extended 
Data Fig. 2c is a fit described below. The features above the supercon-
ducting gap can also be roughly obtained by using two Lorentzians at 
ε− and ε+ and an asymmetric background. Probably, the peaks at ε− and 
ε+ are because of avoided crossings in the band structure of the 2DHF 
at very low energies. We notice that the small feature at ε+ occurs at a 
very similar energy range as a kink in the band structure found at the 
surface of Th-doped URu2Si2 (refs. 48,49). In the calculations we show 
below, we can identify features in surface f-derived bands that can be 
associated to such peaks in the tunnelling conductance. However, such 
features can form as a result of correlations elsewhere in the Brillouin 
zone as well.

Quantum-well states at terraces between steps
In Extended Data Fig. 3a, we show the tunnelling conductance back-
ground subtracted from Fig. 2a to obtain Fig. 2b. To carry out the back-
ground subtraction, we first identify the features at ε− and ε+ in the 
conductance map. These are the light-blue regions centred at ε+ and 
the red–yellow region centred at ε− in Extended Data Fig. 3a. We then 
identify the edge states occurring at the steps, given by the red areas 
at the sides of Extended Data Fig. 3a. Similar peaks are obtained on 
steps separating different terraces. The nature and shape of the 1DESs 
is discussed below. We then model these features by a set of Lorentzians 
and obtain the pattern shown in Extended Data Fig. 3a. We subtract this 
pattern from the experiment (Fig. 2a) to obtain the pattern shown in 
Extended Data Fig. 3b.

To model the quantum-well states, we use the Fabry–Pérot inter
ferometer expression for the density of states gFP(x, E) given by

∫
(3)

g x E
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k q
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0

with k m E E ħ= 2 *( − )/0
2 , m* the electronic effective mass, r the reflec-

tion amplitude, ϕ the phase and L the width of the terrace23. The Fabry–
Pérot interferometer is an optical resonator made of semireflecting 
mirrors and provides a simple and insightful way to model electronic 
wavefunctions confined between two wells. More information on sur-
face band structure and on quantum-well states by confinement is 
provided in refs. 3,9,54–60. We assume a symmetric potential well with 
L = 20 nm, r = 0.5 and ϕ = −π. The pattern generated by equation (3) is 
shown in Extended Data Fig. 3c. White points provide the positions of 
quantized levels as in Fig. 2a,b. It is not difficult to see that the structure 
of quantized levels is renormalized together with the electronic band 
structure. Smaller electronic effective masses imply larger quantized 
level width and separation, and vice versa. However, the simple Fabry–
Pérot model does not take into account relaxation by electron–electron 



interactions, which lead to the extra level broadening discussed in the 
main text and in refs. 27,28,61.

The black lines in Fig. 2d are fits to the equation (3). To account 
for the behaviour at the edges, we add the equation (5) for the 1DES.  
We use the parameters extracted for the terrace L3, discussed in 
Extended Data Table 1. We show further examples in Extended Data 
Fig. 4. Note that, in Fig. 2d, we use equation (3) along with the con-
tribution from the 1DES and contributions for ε− and ε+ at the bias 
voltages at which these features are observed in the tunnelling  
conductance.

The 2DHF quantization was observed on the surfaces of different 
URu2Si2 samples. In Extended Data Fig. 5a–c, we show the result on 
another sample. Notice here that terraces have different sizes. We show 
in Extended Data Fig. 5a the STM topography image. In Extended Data 
Fig. 5b, we show a height profile through the white line in Extended Data 
Fig. 5a. In Extended Data Fig. 5c, we represent the tunnelling conduct-
ance along the central terrace (L ≈ 57 nm) of this profile. We observe 
similar tunnelling conductance curves as those presented in the main 
text. Notice the features at ε− and ε+. The quantized levels are also read-
ily observed. These occur, however, at different energy values, as the 
size of the terrace L is different to that of the terrace in the main text. In 
Extended Data Fig. 5d, we represent the values of the quantized levels 
found in terraces of different sizes L by different colours; we show the 
dispersion relation of the 2DHF as a magenta line.

In Extended Data Fig. 5e, we show as coloured points the bias voltage 
dependence of the energy spacing ΔE between consecutive quantized 
levels for terraces L3, L4, the terrace with length L = 57 nm (shown in 
Extended Data Fig. 5c) and a terrace with length L = 27 nm (not shown). 
We can write that E E E n n∆ = − = (( + 1) − )n n

ħ π

m L+1 2 *
2 2

2 2

2
 






, with n = 1, 2, 3,…. 

This gives a square-root dependence of ΔE on the energy, 
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, shown in Extended Data Fig. 5e. In 

Extended Data Fig. 5f, we plot the average value of E
n
∆

2 + 1
 for each terrace 

as a function of L. We find the expected 
L

1
2

 dependence.
Note that in Extended Data Fig. 5 and Fig. 1d, we do not perform 

any symmetrization. We can see a tendency of the quantized states 
to shift towards the sides of the terrace, giving intensity patterns that 
are slightly asymmetric. We have calculated the expected patterns for 
different reflection coefficients at each side of the terrace. This pro-
duces asymmetric patterns similar to those observed experimentally. 
However, it is difficult to separate such an asymmetry from the signal 
coming from the edge states in the tunnelling conductance. Lateral 
symmetrization thus remains the best way to analyse and understand 
quantum states in the terraces observed here in URu2Si2.

We use ∣ ∣ ∣ ∣ħ τ E π E E E/ = Γ + ( /4 ) [( + )/ ]0 0 0 0
2 to fit the energy dependence 

of the lifetime61. The parameter |E0|/4π is a prefactor that fits our exper-
iment well. The prefactor is sometimes provided as a number28 and has 
also been estimated as e k π

π� ħq4 32
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(with ϵ0 the dielectric constant, n the electron density and qTF the 
Thomas–Fermi screening length)27. These estimations provide similar 
values to |E0|/4π.

To obtain the energy dependence of the reflection coefficient, 
r(E), we used the model described in ref. 24. To this end, we consider a 
one-dimensional periodic array of scattering objects, each modelled 
by a square potential well of width b < L (L is the width of the terrace). 
A constant complex potential W provides confinement and coupling 
to the bulk states. We can then write

( ) ( )
R E

e e

e e
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−

−
(4)

iqb iqb

iqb k q
k q

iqb k q
k q

ikb
−

−
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ħ
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2

 and q = m E W

ħ

2 *( − )
2

. The reflection coefficient r(E) is given 

by r(E) = |R(E)|2. For the dashed line in Fig. 2e, we use typical parameters 
for Cu, with m* = 0.46m0 and W = (−2 − 1i) eV. We shift the obtained 

curve in energy to obtain a result within the energy range of our data. 
For the continuous line in Fig. 2e, we use m* = 17m0 and W = (−18 − 5i) meV.

Band-structure calculations at U-terminated surfaces of URu2Si2

The band structure of bulk URu2Si2 has been analysed previously 
in detail using DFT calculations62–64. Relevant results coincide  
with angle-resolved photoemission, STM and quantum oscillation 
studies22,65–71.

Several surface states have been observed by angle-resolved pho-
toemission spectroscopy19–22. The surface state discussed in refs. 19,20 
is formed by a hole-like band with its maximum at −35 meV and is thus 
far from what we observe here. At the X point of the Brillouin zone, 
there are no bulk states. Angle-resolved photoemission spectroscopy 
measurements show hints of surface-like bands with two-dimensional 
character at these points21. We have taken a closer look at the X point 
through DFT calculations. To this end, we built a U-terminated supercell 
consisting of 37 atomic layers, giving a total of ten U layers (Extended 
Data Fig. 6a). We performed DFT calculations using the full-potential 
linearized augmented plane-wave method with local orbitals as imple-
mented in the WIEN2k package72. Atomic spheres radii were set to 2.5, 
2.5 and 1.9 Bohr radii for U, Ru and Si, respectively. We used a 19 × 19 × 1 
mesh of k-points in the first Brillouin zone, reduced by symmetry to 
55 distinct k-points. The RKmax parameter was set to 6.5, resulting in a 
basis size of approximately 5,400 (more than 100 basis functions per 
atom). Spin–orbital coupling was included in the second variational 
step73 and relativistic local orbitals were included for U 6p1/2 and Ru 
4p1/2 states. The basis for calculations of the spin–orbital eigenvalue 
problem consisted of scalar-relativistic valence states of energies up 
to about 5 Ry, resulting in a basis size of about 3,800. The local density 
approximation was used for the treatment of exchange and correlation 
effects63,74.

In Extended Data Fig. 6b, we highlight in particular the U spin-up char-
acter of the obtained surface-projected band structure. The spin-down 
character is much less pronounced within the shown energy range. 
There are several bands inside gaps of the bulk band structure, but 
only those around the X point of the simple tetragonal Brillouin zone, 
Xst (see Extended Data Fig. 6c), are sufficiently shallow to provide large 
effective masses.

We find a surface state (upper inset of Extended Data Fig. 6b) that 
consists of two hybridized hole bands, forming an M-shaped feature 
close to the Fermi level. The dispersion relation found in our experiment 
(magenta line in the upper inset of Extended Data Fig. 6b) is compatible 
with the central part of the M-shaped feature.

1DES and HO within U layers
To analyse the 1DES at the step between two terraces, we use a one- 
dimensional Dirac-function-like potential at the step, V(x) = U0δ 
(x − x1DES), in which x1DES is the position of the 1DES. We take U0 = b0V0, 
with b0 the width of the potential well and V0 the energy depth (V0 < 0). 
We add a complex potential, V(x) → (U0 − iU1)δ(x − x1DES) to simulate 
the coupling of the 1DES to the bulk of the crystal. A schematic repre-
sentation of this model is shown in Extended Data Fig. 7a. Solving the 
Schrödinger equation for E < 0, we obtain the Green’s function of the 
states in the potential well

G E A
e

E E iη
( ) =

− +
, (5)

x x λ− − /

1DES 1DES

x1DES∣ ∣

in which λ U=x
ħ
m* 0

−1
2

∣ ∣  is the decay length with m* the effective mass. 
E1DES and η1DES are the energy position and the energy broadening of the 
1DES given by
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in which δV is the height of the potential barrier of the well relative to 
the Fermi level.

We can now fit the tunnelling conductance at the 1DES using

g A
η e

E E η
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(8)
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x x
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convoluted with the derivative of the Fermi–Dirac distribution func-
tion. Extended Data Table 1 shows the extracted fitting parameters 
E1DES, η1DES, λx and x1DES for the four different terraces L1 to L4 from Fig. 1.

From Extended Data Table 1, we see that the energy position and the 
energy broadening of the 1DES are independent of the terrace size, with 
average values of E1DES = −0.52 ± 0.14 meV and η1DES = 0.45 ± 0.06 meV. 
We also see that all the spatial features are always at the same position 
with respect to the step, x1DES ≈ 4.0a0, a0 being the in-plane lattice con-
stant, with a decay length λx ≈ 0.9 nm ≈ 2a0. The latter indicates that 
1DESs and 2DHFs couple when the decay length reaches a few intera-
tomic distances. With the extracted average values from Extended Data 
Table 1 for λx, η1DES and E1DES, we obtain U0 = 5.4 meVÅ, U1 = 0.38 meVÅ 
and δV = 3.1 meV.

We can analyse the 1DES through the tunnelling conductance at a 
step (Extended Data Fig. 7b,c). At low bias voltages, we find a dip in 
the tunnelling conductance of a few nanometres at the upper side of  
the step (blue lines in Extended Data Fig. 7b; for example, at −1.2 mV). 
The dip fills with the 1DES at about E1DES (red lines in Extended Data 
Fig. 7b at −0.4 mV) and empties again at higher bias voltages. This shows 
that charge depletion close to the step opens a gap in the band struc-
ture. The gap is filled at the resonant energy of the 1DES, as observed 
previously in metals30,75,76. By normalizing the tunnelling conductance 
to its shape far from the step (Extended Data Fig. 7c), we can follow the 
decay of the 1DES into the quantum-well states of the 2DHF with the 
model described above (Extended Data Fig. 7a). The decay length is on 
the order of the inverse of the wavevector of the 2DHF.

Taking a closer look at the steps, we surprisingly find a notable 
in-plane anisotropy of the 1DES. As we see in Extended Data Fig. 7b, 
the 1DES is observed when crossing steps along the dashed red line in 
Extended Data Fig. 7b but not along the dashed blue line, as discussed 
in the main text. It is useful here to take a closer look at the HO as well. As 
discussed in refs. 14,34,64,77–79, there is no dipolar (magnetic) or structural 
order related to the HO phase. Instead, the U lattice can present some 
sort of long-range electronic ordering, whose actual symmetry and 
shape is considered as a relevant and open mystery14.

Previous NMR measurements indicated the absence of fourfold 
in-plane symmetry breaking in bulk URu2Si2 (ref. 35), whereas our STM 
data clearly show an in-plane symmetry breaking in the 1DES. At the 
surface, there can be marked changes in the electronic structure owing 
to a modification of the valence of uranium atoms21,80. Rather, the break-
ing of the in-plane symmetry observed here in the 1DES suggests that 
a fundamental breaking of the near-surface electronic properties of 
the U lattice is at play in the HO phase.

Interplay between superconductivity and the 2DHF
We consider several parallel conduction channels between the tip 
and the surface. For simplicity, we take into account tunnelling into 
the 2DHF and into the feature of largest size at ε− (Extended Data 
Fig. 8a). The first channel, t1, connects the tip with the 2DHF. The 2DHF 
is superconducting by proximity from the bulk superconductor, which 
we model using a coupling ts. With the second channel, t2, we connect 
the tip to other surface features. We can write the retarded Green 
function Ĝ

r
 as
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in which E2DHF is the energy associated to the 2DHF and includes  
the shift of energy owing to HO and Fano resonance, W is an energy  
scale related to the normal density of states at the Fermi level by 
ρ(EF) = 1/(πW), Δ is the superconducting gap and η is a small energy 
relaxation rate. We have added the self energies iΓj/2, ( j = 2DHF, −, +), 
with Γj the width of the resonance j.

The differential conductance is calculated as
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Here f(E, T ) is the Fermi–Dirac distribution at the energy E and tem-
perature T and σ = e

h0
2 2

 is the quantum of conductance (with h being 
Planck’s constant and e the elementary charge). Notice that T is the 
transmission, not the density of states often used to discuss STM meas-
urements in superconductors. Notice also that we take into account 
tunnelling into the 2DHF (G11

r ) and into ε− (G33
r ), with mixed contributions 

(G31
r  and G13

r ).
To fit the tunnelling conductance curves shown in Fig. 4a,b and 

Extended Data Fig. 8b, we subtracted an asymmetric background (see 
Extended Data Figs. 2 and 8b). In Extended Data Table 2, we show the 
parameters used to obtain the tunnelling conductance with tempera-
ture (shown as black lines in Fig. 4a,b) from equation (11). We do not vary 
the parameters η = 0.018 meV, ε2DHF = 12 meV, Γ2DHF = 1 meV, Γ− = 0.55 meV 
and Γ+ = 0.14 meV with temperature. We see that the superconducting 
lifetime itself is practically negligible, η = 0.018 meV ≪  Δ = 0.2 meV. The 
large zero-bias conductance is not because of the incomplete coupling 
to the bulk, as ts is close to one. There is further smearing coming from 
features at ε+ and ε−. Γ+ and Γ− provide the smeared superconducting 
density of states and a finite tunnelling conductance at zero bias. Notice 
that the superconducting gap vanishes at the critical temperature Tc 
but that the strongly bias-voltage-dependent tunnelling conductance 
remains up to higher temperatures (Extended Data Fig. 8).

There are numerous evidences for d-wave or more complex super-
conducting properties in URu2Si2. The differences in the supercon-
ducting density of states between these superconducting states and 
s-wave superconductivity are relatively small, particularly because 
the tunnelling conductance obtained with the model described here 



provides smeared conductance curves. The same occurs for the tem-
perature dependence of the superconducting gap. Instead, the shape 
and asymmetry of the tunnelling conductance at defects might provide 
the connection between the properties of the superconducting 2DHF 
and the unconventional superconductivity of the bulk.

Results at point defects
We analyse in more detail here the tunnelling conductance at defects. 
We plot the tunnelling conductance obtained on two different defects 
in Extended Data Fig. 9a as blue and red lines. Notice the pronounced 
electron–hole asymmetry, which provides curves that widely differ 
from the curves far from defects (black line in Extended Data Fig. 9a). 
As discussed above, we can identify two kinds of defects: protrusions 
with height increases of around 15 pm, probably because of interstitial 
atoms located beneath the surface (Extended Data Fig. 9b,d,f,h), and 
troughs of around 15 pm in size, probably because of vacancies beneath 
the surface (Extended Data Fig. 9c,e,g,i). The defects visibly affect the 
tunnelling conductance. We plot the tunnelling conductance at ε+, 0 mV 
and ε− for both types of defect in Extended Data Fig. 9f,g. In Extended Data 
Fig. 9h,i, we show the spatial dependence of the tunnelling conductance 
along a crystalline axis for both types of defect. At the site of the defect, 
there is a pronounced electron–hole asymmetry, which is opposite for 
each kind of defect. Protrusions provide a substantially enhanced tun-
nelling conductance for empty states above the Fermi level, whereas 
troughs provide the opposite (Extended Data Fig. 9a). At zero bias, the 
troughs show a pronounced in-plane anisotropy and a reduction of the 
superconducting gap, whereas the protrusions are in-plane isotropic and 
show an opened superconducting gap. When leaving the defect, the usual 
behaviour is recovered after several nanometres (Extended Data Fig. 9h,i).

To explain the pronounced modification of the electron–hole 
asymmetry of the tunnelling conductance, let us consider electron 
correlations creating a large Fermi surface scenario at some portion 
of the band structure. At low temperatures, correlations provide an 
avoided band crossing owing to hybridized heavy and light bands. We 
can assume that it happens somewhere in the band structure of URu2Si2, 
for example, close to the Γ point, as suggested in refs. 14,18,47. Then, we 
obtain at low temperatures a large Fermi surface with heavy electrons 
and a close-lying light band with smaller wavevectors above the Fermi 
level. We can then assume that both kinds of defect couple to different 
parts of such a correlated band structure. Following our experiments, 
protrusions create 2DHF coupling to the small light band and a large 
density of states for empty states above the Fermi level (red curve in 
Extended Data Fig. 9a). Troughs can instead favour coupling to the 
heavy band, giving the opposite behaviour (blue curve in Extended Data 
Fig. 9a). The superconducting gap is disturbed at troughs. Generally, 
we expect all sorts of defects to be pair breaking, as URu2Si2 is not a 
s-wave superconductor. However, two-dimensional quantized states 
screen pair-breaking interactions from the underlying superconducting 
bulk81. This suggests that the absence of in-gap states in protrusions is 
because of screening by the 2DHF. Troughs, however, produce a strong 
coupling to the heavy bands that carry the heavy superconducting 
state and thus also contribute to pair breaking.

In-gap states at troughs have a certain in-plane anisotropy (Extended 
Data Fig. 9g, middle panel). The anisotropy of the superconducting 
gap has been analysed with macroscopic measurements82–85. There 
are indications for gap nodes, for instance, from specific heat meas-
urements82,83,85. Local vortex dynamics shows an in-plane fourfold or 
twofold pinning potential86. When measured as a function of the angle, 
there is a pronounced out-of-plane anisotropy, which has been associ-
ated to nodes along the c axis, but there is little in-plane variation85. 
Following such a nodal structure, several experiments propose a chiral 
kz(kx + iky) superconducting wavefunction84,85,87. The surface states of a 
(kx ± iky) superconductor are predicted to be chiral arc states connect-
ing the Weyl nodes88. It is so far unclear how these surface states of the 
superconducting phase adapt to the surface states of the normal phase, 

which appear as a consequence of the surface-induced perturbation 
of the crystalline potential. As mentioned, we observe an asymme-
try at zero bias (Extended Data Fig. 9g, middle panel). To increase the 
signal-to-noise ratio, we were forced to apply a fourfold symmetriza-
tion. Thus, the anisotropy might be twofold or fourfold. The chiral 
kz(kx + iky) state is in-plane isotropic. However, the shape of in-gap states 
is determined by the anisotropy of the normal-state wavefunctions, 
together with the symmetry of the superconducting wavefunction, 
so that the observed in-plane anisotropy of the in-gap states probably 
reflects the normal-state in-plane anisotropy.

Data availability
All data supporting the findings of this study are available from the 
corresponding authors on request.

Code availability
The simulation code WIEN2k used to compute the surface electronic 
band structure can be obtained from http://susi.theochem.tuwien.ac.at.
 

41.	 Fernández-Lomana, M. et al. Millikelvin scanning tunneling microscope at 20/22 T with a 
graphite enabled stick-slip approach and an energy resolution below 8 μeV: application 
to conductance quantization at 20 T in single atom point contacts of Al and Au and to the 
charge density wave of 2H-NbSe2. Rev. Sci. Instrum. 92, 093701 (2021).

42.	 Martín-Vega, F. et al. Simplified feedback control system for scanning tunneling 
microscopy. Rev. Sci. Instrum. 92, 103705 (2021).

43.	 Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for 
nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

44.	 Suderow, H., Guillamon, I. & Vieira, S. Compact very low temperature scanning tunneling 
microscope with mechanically driven horizontal linear positioning stage. Rev. Sci. 
Instrum. 82, 033711 (2011).

45.	 Schmidt, A. R. et al. Imaging the Fano lattice to hidden order transition in URu2Si2. Nature 
465, 570–576 (2010).

46.	 Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in 
URu2Si2. Proc. Natl Acad. Sci. 107, 10383–10388 (2010).

47.	 Yuan, T., Figgins, J. & Morr, D. K. Hidden order transition in URu2Si2: evidence for the 
emergence of a coherent Anderson lattice from scanning tunneling spectroscopy. Phys. 
Rev. B 86, 035129 (2012).

48.	 Hamidian, M. H. et al. How Kondo-holes create intense nanoscale heavy-fermion 
hybridization disorder. Proc. Natl Acad. Sci. 108, 18233–18237 (2011).

49.	 Morr, D. K. Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy 
fermion materials. Rep. Prog. Phys. 80, 014502 (2016).

50.	 Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic 
quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

51.	 Coleman, P. Heavy Fermions: Electrons at the Edge of Magnetism, Chs. 1–3, 1–217 (Wiley, 
2007).

52.	 Flouquet, J. in Progress in Low Temperature Physics Vol. 15 (ed. Halperin, W. P.) 139–281 
(Elsevier, 2005).

53.	 Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo 
systems. Phys. Rev. Lett. 104, 187202 (2010).

54.	 Fu, Y.-S. et al. Manipulating the Kondo resonance through quantum size effects. Phys. Rev. 
Lett. 99, 256601 (2007).

55.	 Crommie, M. F., Lutz, C. P., Eigler, D. M. & Heller, E. J. Quantum corrals. Phys. D Nonlinear 
Phenom. 83, 98–108 (1995).

56.	 Crommie, M. F., Lutz, C. P., Eigler, D. M. & Heller, E. J. Quantum interference in 2D atomic- 
scale structures. Surf. Sci. 361, 864–869 (1996).

57.	 Tamm, I. Über eine mögliche Art der Elektronenbindung an Kristalloberflächen. Z. Phys. 
76, 849–850 (1932).

58.	 Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 
317–323 (1939).

59.	 Kevan, S. & Eberhardt, W. in Kevan, S. (ed.) Angle-Resolved Photoemission: Theory and 
Current Applications Vol. 74 (ed. Kevan, S.) 99–143 (Elsevier, 1992).

60.	 Fiete, G. A. et al. Scattering theory of Kondo mirages and observation of single Kondo 
atom phase shift. Phys. Rev. Lett. 86, 2392–2395 (2001).

61.	 Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 
2005).

62.	 Oppeneer, P. M. et al. Electronic structure theory of the hidden-order material URu2Si2. 
Phys. Rev. B 82, 205103 (2010).

63.	 Elgazzar, S., Rusz, J., Amft, M., Oppeneer, P. M. & Mydosh, J. A. Hidden order in URu2Si2 
originates from Fermi surface gapping induced by dynamic symmetry breaking. Nat. 
Mater. 8, 337–341 (2009).

64.	 Ikeda, H. et al. Emergent rank-5 nematic order in URu2Si2. Nat. Phys. 8, 528–533 (2012).
65.	 Aoki, D. et al. High-field Fermi surface properties in the low-carrier heavy-fermion 

compound URu2Si2. J. Phys. Soc. Jpn. 81, 074715 (2012).
66.	 Onuki, H. et al. Fermi surface properties and de Haas–van Alphen oscillation in both the 

normal and superconducting mixed states of URu2Si2. Philos. Mag. B 79, 1045–1077 (1999).
67.	 Yoshida, R. et al. Signature of hidden order and evidence for periodicity modification in 

URu2Si2. Phys. Rev. B 82, 205108 (2010).

http://susi.theochem.tuwien.ac.at


Article
68.	 Kawasaki, I. et al. Electronic structure of URu2Si2 in paramagnetic phase studied by soft 

x-ray photoemission spectroscopy. J. Phys. Conf. Ser. 273, 012039 (2011).
69.	 Meng, J.-Q. et al. Imaging the three dimensional Fermi surface pairing near the hidden 

order transition in URu2Si2 using angle-resolved photoemission spectroscopy. Phys. Rev. 
Lett. 111, 127002 (2013).

70.	 Bareille, C. et al. Momentum-resolved hidden-order gap reveals symmetry breaking and 
origin of entropy loss in URu2Si2. Nat. Commun. 5, 4326 (2014).

71.	 Santander-Syro, A. F. et al. Fermi-surface instability at the ‘hidden-order’ transition of 
URu2Si2. Nat. Phys. 5, 637–641 (2009).

72.	 Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. 
Phys. 152, 074101 (2020).

73.	 Kuneš, J., Novák, P., Diviš, M. & Oppeneer, P. M. Magnetic, magneto-optical, and structural 
properties of URhAl from first-principles calculations. Phys. Rev. B 63, 205111 (2001).

74.	 Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas 
correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

75.	 Namba, H., Nakanishi, N., Yamaguchi, T. & Kuroda, H. Electronic states localized at step 
edges on Ni(7 9 11) surfaces studied by angle-resolved photoelectron spectroscopy. Phys. 
Rev. Lett. 71, 4027–4030 (1993).

76.	 Avouris, P. & Lyo, I.-W. Observation of quantum-size effects at room temperature on metal 
surfaces with STM. Science 264, 942–945 (1994).

77.	 Chandra, P., Coleman, P. & Flint, R. Hastatic order in the heavy-fermion compound 
URu2Si2. Nature 493, 621–626 (2013).

78.	 Broholm, C. L. et al. Strict limit on in-plane ordered magnetic dipole moment in URu2Si2. 
Phys. Rev. B 89, 155122 (2014).

79.	 Harima, H., Miyake, K. & Flouquet, J. Why the hidden order in URu2Si2 is still hidden—one 
simple answer. J. Phys. Soc. Jpn. 79, 033705 (2010).

80.	 Johansson, B. Valence state at the surface of rare-earth metals. Phys. Rev. B 71, 6615 
(1979).

81.	 Morr, D. K. & Stavropoulos, N. A. Quantum corrals, eigenmodes, and quantum mirages in 
s-wave superconductors. Phys. Rev. Lett. 92, 107006 (2004).

82.	 Fisher, R. A. et al. Specific heat of URu2Si2: effect of pressure and magnetic field on 
the magnetic and superconducting transitions. Phys. B Condens. Matter 163, 419–423 
(1990).

83.	 Brison, J. P. et al. Very low temperature properties of heavy fermion materials. Phys. B 
Condens. Matter 199, 70–75 (1994).

84.	 Kasahara, Y. et al. Superconducting gap structure of heavy-Fermion compound URu2Si2 
determined by angle-resolved thermal conductivity. New J. Phys. 11, 055061 (2009).

85.	 Yano, K. et al. Field-angle-dependent specific heat measurements and gap determination 
of a heavy fermion superconductor URu2Si2. Phys. Rev. Lett. 100, 017004 (2008).

86.	 Iguchi, Y. et al. Local observation of linear-T superfluid density and anomalous vortex 
dynamics in URu2Si2. Phys. Rev. B 103, L220503 (2021).

87.	 Kittaka, S. et al. Evidence for chiral d-wave superconductivity in URu2Si2 from the 
field-angle variation of its specific heat. J. Phys. Soc. Jpn. 85, 033704 (2016).

88.	 Schnyder, A. P. & Brydon, P. M. R. Topological surface states in nodal superconductors.  
J. Phys. Condens. Matter 27, 243201 (2015).

Acknowledgements We acknowledge discussions on the symmetry of HO with H. Harima. 
This work was supported by the Spanish State Research Agency (PID2020-114071RB-I00, 
PID2020-117671GB-I00 and CEX2018-000805-M), by the Comunidad de Madrid through the 
programme NanomagCOST-CM (programme no. S2018/NMT-4321) and by EU (PNICTEYES 
ERC-StG-679080 and COST SUPERQUMAP CA21144). H.S., E.H. and I.G. acknowledge 
SEGAINVEX at UAM for the design and construction of the STM cryogenic equipment. J.A.G. 
and E.H. acknowledge the support of the Ministerio de Ciencia, Tecnología e Innovación de 
Colombia (grants 122585271058 and 784(2017)). W.J.H. and E.H. acknowledge support from 
the Universidad Nacional de Colombia (DIEB projects 48148, 57522 and 201010025979(2016)). 
J.P.B. and G.K. acknowledge support from the French National Agency for Research (ANR) 
within the projects FRESCO no. ANR-20-CE30-0020 and FETTOM ANR-19-CE30-0037. J.R. and 
P.M.O. acknowledge support from the Swedish Research Council (VR), the Knut and Alice 
Wallenberg Foundation (grant no. 2022.0079) and the Swedish National Infrastructure for 
Computing (SNIC), through grant no. 2018-05973.

Author contributions E.H. performed the study and made all experiments, with the supervision 
of I.G. E.H. analysed the data and compared with theory, with the supervision of W.H. and  
J.A.G. J.R. and P.M.O. performed the band-structure calculations and discussed the features of 
surface states. The models to account for superconducting features and for the behaviour at 
the step were proposed by W.H. and A.L.Y. D.A. synthesized and G.K. and J.P.B. characterized 
the samples. D.A., J.F. and H.S. proposed the study. The manuscript was written by E.H., I.G., 
W.H., A.L.Y., P.M.O. and H.S., with contributions from all authors.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Edwin Herrera or 
Hermann Suderow.
Peer review information Nature thanks Yi-feng Yang and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

http://www.nature.com/reprints


Extended Data Fig. 1 | Different surface terminations in URu2Si2. a, URu2Si2 
crystal structure. U atoms are shown in green, Ru in magenta and Si in yellow. 
We show using the same colours the corresponding planes and indicate the 
distances between planes, normalized to the c-axis lattice parameter. With 
coloured arrows, we highlight the distance between the planes observed in the 
STM images. b, STM topography image at a surface with terraces. As we discuss 
in the text, these are all U-terminated terraces. The height scale is given by the 
bar on the left. In the upper-right inset, we show a height histogram (distances 
normalized to the c-axis lattice constant). Notice that all peaks are located at an 
integer of c/2. The crystal axes are shown as white arrows. The small white 

square is the area shown in e. c,d, STM topography images at surfaces showing 
terraces with a triangular shape. These are distinct terraces. The crystal axes 
are shown as arrows. In the upper-right inset, we show the height histogram, 
with distances between terraces having different sizes. Coloured arrows are as 
in a and identify height differences between the U and Si terraces. The small 
white squares in c and d provide the areas shown in f and g, respectively. We 
show other kinds of defect in h to o, with the colour scale given by the bars on 
the left of each image. All data were taken at 100 mK with a tunnelling current 
Itunnel = 10 nA and a bias voltage VBias = 10 mV.
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Extended Data Fig. 2 | Tunnelling conductance of the HO state. a, Tunnelling 
conductance versus bias voltage at a temperature above the HO transition 
temperature (17.5 K) is shown as black points. The red line is a fit based on the 
Fano lineshape owing to parallel tunnelling paths into light and heavy bands.  
b, Tunnelling conductance inside the HO state versus bias voltage is shown  
as black points. Notice the reduction of the bias voltage range, to highlight  
the features associated to HO within the Fano lineshape. The HO gap is 

schematically marked by an arrow. The red line is a fit as described in the text.  
c, At the lowest temperatures and focusing on very low bias voltages, we observe 
the tunnelling conductance represented as black points. The red line is a fit with 
a model described in Methods. We show by dashed lines the features at ε+, ε− and 
at the superconducting gap value ΔSC. Temperatures at which the data were 
taken are provided in each panel.



Extended Data Fig. 3 | Subtracted tunnelling conductance background and 
quantized density of states pattern. a, Bias voltage dependence of the 
subtracted tunnelling conductance background versus distance. b, Bias 
voltage dependence of the tunnelling conductance obtained after the 

subtraction. c, Fabry–Pérot calculation using the parameters discussed in the 
text. Quantized levels are represented by white points. Colour scale from blue 
(low conductance) to red (high conductance) represents values given in the 
bars at the bottom left.
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Extended Data Fig. 4 | Fits of the tunnelling conductance. We show as circles 
the tunnelling conductance as a function of distance for the bias voltages 
indicated in the legend of each panel (taken at 0.1 K). Lines are fits described in 
Methods, with–in addition–a nearly constant background to account for the 
features at ε− and ε+ and the features of the 1DES.



Extended Data Fig. 5 | Dispersion relation and quantization on different 
terraces. a, STM image on a field of view containing a few U-terminated terraces 
(taken at 0.1 K). b, Height profile (normalized with the c-axis lattice constant) 
along the white line in a. c, Tunnelling conductance along the central terrace 
(L ≈ 57 nm) of the profile shown in b (colour scale from red, high conductance, 
to blue, low conductance). We mark the position of the features at ε+ and ε− with 
dashed white lines. d, Dispersion relation of the 2DHF (magenta line). Points are 

the positions of the quantized levels obtained from different terraces as 
described in the text (size L of each terrace is 20 nm blue, 28 nm red, 38.5 nm 
orange and 57 nm green). e, separation between energy levels ΔE as a function 
of the energy (coloured points following the colour code of d). Lines are a square- 
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Extended Data Fig. 6 | DFT calculations of the surface band structure 
around the X point of the simple tetragonal Brillouin zone. a, U-terminated 
supercell structure of URu2Si2 used for DFT calculations. b, Band structure of 
URu2Si2 in a slab calculation (blue points), described in the text, along the 
high-symmetry directions of the simple tetragonal Brillouin zone, Γst, Mst and 
Xst. The size of the points provides the U spin-up character of the bands. In the 
upper inset, we show a zoom-in around the Xst point. The magenta line provides 
the dispersion relation compatible with our experiments and the black points 
are the quantized levels we identified (from Fig. 2c). c, The usual Brillouin  
zone construction of URu2Si2, with the tetragonal Brillouin zone (red lines) and 
the simple tetragonal (st) construction (yellow lines) used to describe the 
low-temperature HO phase.



Extended Data Fig. 7 | 1DES and HO within U layers. a, Schematic representation 
of the parameters used to describe the 1DES at a step between two consecutive 
terraces of length L. We represent the quantized levels of the confined 2DHF on 
each terrace with pink colour. The dashed black (continuous red) line represents 
the exponential behaviour of the 1DES without (with) coupling to the quantized 
levels. b, Topography image along a step between two consecutive terraces 
formed by U layers is shown in the top-left panel. The colour scale is shown as a 
bar on the left, in Å. White arrows provide the in-plane crystalline axis. The other 
panels are tunnelling conductance images (colour scale provided at the left) in 
the same field of view for different values of the bias voltage (taken at 0.1 K). 

Notice the different shape of the 1DES along steps that are located on the two 
in-plane directions of the U atom lattice. c, Circles in red and blue represent the 
tunnelling conductance as a function of distance (referred to the tunnelling 
conductance far from the edge at x = 50 nm) at the bias voltage at which the 
1DES appears V ≈ −0.4 mV, σnorm(−0.4 mV) = σ(V = −0.4 mV,x) − σ(V = −0.4 mV, 
x = 50 nm) along the red and blue lines in the top-left panel of b. The continuous 
red line is the fit of the 1DES (equation (8)) plus the quantized level model 
(equation (3)). The bottom panel shows (black line) the STM height profile 
along the red and blue lines in the top-left panel of b in units of the c-axis lattice 
constant.
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Extended Data Fig. 8 | Model and tunnelling conductance from 0.1 K to 4 K. 
a, Schematic representation of the model and its parameters described in 
Methods. b, Tunnelling conductance as a function of temperature, also well 
above the superconducting transition temperature Tc. Notice how the feature 

at ε+ vanishes because of thermal smearing, whereas the more pronounced 
feature at ε− remains up to higher temperatures. Data are shown by coloured 
points and the black lines are fits, described in the text.



Extended Data Fig. 9 | Tunnelling conductance at atomic-sized defects.  
a, Tunnelling conductance obtained far from defects (black line). We show by 
the vertical dashed lines the features at ε+ and ε−. Curves are taken at 0.1 K.  
b,c, Topographic images of the U lattice showing two types of defect. White 
arrows provide the in-plane lattice constants. The white scale bar is also shown. 
The red and blue triangles provide the positions at which the red and blue 
curves in a were taken. d,e, Profiles obtained along the dashed lines of b and c 
with the same colours. f,g, Tunnelling conductance maps obtained at the bias 
voltages shown in each panel, using the colour scale provided on the left for 
protrusions and troughs, respectively. The scale bar is given in black. To increase 
the signal-to-noise ratio, we have made a fourfold symmetrization in all these 
panels. h,i, Conductance across the defect site as a function of the distance 
from the centre of the defects in b and c, respectively, along a crystalline 
direction. The colour scale is given by the bar on the left of f and g.



Article
Extended Data Table 1 | 1DES parameters for terraces L1 to L4

Values of the parameters extracted from equation (8) used to fit the 1DES on the four different terraces L1 to L4 of Fig. 1.



Extended Data Table 2 | Fitting parameters from the tunnelling conductance in the range 0.1 K ≤ T ≤ 4.0 K

Values of the parameters extracted from equation (11) used to fit the tunnelling conductance curves shown as black lines in Fig. 4a,b and Extended Data Fig. 8b.
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