
nature methods Volume 19 | November 2022 | 1326–1327 | 1326

https://doi.org/10.1038/s41592-022-01655-4

Correspondence

PyImageJ: A library for integrating ImageJ
and Python

N
ew advancements in biological
image processing, such as object
segmentation, tracking1 and
machine-learning frameworks,
have enabled researchers to

extract more information and ask additional
questions of their image data. Increasingly,
these innovations are written in the Python
programming language, making use of its
extensive software library (for example,
NumPy2 and SciPy3) and its accessibility to
researchers at various programming profi-
ciency levels. As the Python software library
has grown over the years to address new
image-processing needs, so too has ImageJ — a
Java-based open-source software package and
platform widely used for scientific image anal-
ysis. ImageJ allows researchers to perform a
variety of image-processing and analysis tasks
such as edge detection, tiled image stitching,
object and cell lineage tracking; morphologi-
cal operations such as skeletonization; and
various data projections. All of these opera-
tions can be combined to construct complex
workflows in the form of macros and scripts.
Additionally, the functionality of ImageJ has
been extended through the use of plugins —
new features written in Java and accessible
directly from ImageJ, capable of bringing cut-
ting edge technologies to the ImageJ platform.
ImageJ supports an active community of soft-
ware developers who produce and maintain
these three extension types, which in recent
years include deep-learning capabilities4.

Unfortunately, Java-based and Python-
based programs do not work together or share
data seamlessly. Without the ability to easily
exchange data between Python and ImageJ,
features must be re-implemented in each
respective environment or targeted wrap-
pers built; this is not scalable. Communities
across both languages require a bridge ena-
bling seamless feature integration without
duplicated effort.

To address this need, we present here PyIm-
ageJ, a Python-based package built on ImageJ2
(ref. 5) that provides fundamental interoper-
ability between Python and ImageJ-based soft-
ware including the original ImageJ, ImageJ2
and the Fiji distribution of ImageJ6. With

PyImageJ, we aim to support both software
developers wanting to combine ImageJ and
its plugin library with Python-based routines,
and bench scientists wanting to do the same
within their analysis workflows. PyImageJ is
cross-platform, running on Linux, macOS
and Windows operating systems, and can be
installed from PyPI and conda-forge. PyImageJ
enables two-way communication between
ImageJ and Python by initializing Java as a sub-
process of Python, such that any Java-based
functionality can be used from Python pro-
grams, and new Python-based routines can be
written to augment Java programs. The other
paradigm, initializing Python as a subprocess
of Java, is also useful in some scenarios and
is currently under development. The archi-
tecture of ImageJ2 consists of libraries built
on two key layers: SciJava (https://scijava.
org/), which offers foundational infrastruc-
ture and is not image specific; and ImgLib2
(ref. 7), which provides the core image data
model (Fig. 1). Accordingly, PyImageJ is built

on two foundational Python packages — scy-
java (https://github.com/scijava/scyjava) and
imglyb (https://github.com/imglib/imglyb) —
which act as Python-based integration layers
for the Java-based SciJava and ImgLib2 pack-
ages, respectively.

The first layer, scyjava, utilizes the jgo
project (https://github.com/scijava/jgo) to
retrieve the ImageJ2 Java libraries, and JPype
(https://jpype.readthedocs.io/en/latest/)
to create a special Python-integrated Java
environment that includes the libraries. This
design enables scyjava to transparently down-
load and cache Java libraries packaged from
remote online repositories, start the Java envi-
ronment as a subprocess with those libraries
included, wrap Java classes as dynamically
generated Python classes with all the same
functions, and convert common data struc-
tures such as lists, sets and dictionaries or
maps between Java and Python. Notably, the
scyjava package is potentially useful for any
in-process integration of Java-based libraries

 Check for updates

TensorFlow FLIMJscikit-image SciPy Bio-Formats

imglyb

PyImageJ

scyjava SciJava Common

ImgLib2

ImageJ2

JPype

Python interpreter Java virtual machine

Fig. 1 | The software architecture of PyImageJ. Blue shows the Python environment and example Python
applications. Red shows the ImageJ2 software stack with example plugins running in a special Python-
integrated Java virtual machine (JVM). In the Python environment, PyImageJ uses JPype (from the scyjava
layer) to create the Python-integrated JVM that will run the ImageJ2 software stack. In the Java environment,
this encapsulated JVM incorporates all the user-requested Java libraries, including ImageJ, ImageJ2 and
additional plugins — for example, from Fiji and/or other ImageJ update sites. The top Python layer, PyImageJ,
provides access to the ImageJ2 gateway and Python convenience functions. The Python-side imglyb
interfaces with the Java-side ImgLib2. Finally, the Python scyjava layer provides the foundational components
such as JVM configuration and type conversions.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01655-4
https://scijava.org/
https://scijava.org/
https://github.com/scijava/scyjava
https://github.com/imglib/imglyb
https://github.com/scijava/jgo
https://jpype.readthedocs.io/en/latest/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01655-4&domain=pdf

nature methods Volume 19 | November 2022 | 1326–1327 | 1327

Correspondence

into Python programs and can be used inde-
pendently of PyImageJ.

Exchanging image data between Python
and ImageJ is accomplished through the img-
lyb layer, which provides zero-copy access
to NumPy arrays and metadata-rich xarray
data through shared memory. Using shared
memory to store image data not only reduces
memory use and processing time, but also ena-
bles the user to see the results of ImageJ pro-
cessing immediately on Python-based images.
ImageJ images that have been converted into
an appropriate Python type (that is, NumPy
or xarray) can be accessed by Python-based
image-processing tools such as napari8, a
fast and interactive multi-dimensional image
viewer, or CellProfiler9, a workflow tool for
reproducibly scaling analyses to large batches
of data. Improved performance has already
been shown with the RunImageJScript Cell-
Profiler plugin, which, for example, enables a
user to apply models from Trainable Weka Seg-
mentation10 (an ImageJ plugin) as one step in
their feature classification workflow. PyImageJ
offers the user interactive access to the full
ImageJ2 Application Programming Interface
(API), including all of ImageJ2’s functional-
ity and plugins, as well as the original ImageJ
API, accessible via the backwards compat-
ibility legacy layer of ImageJ2. PyImageJ also
supports a headless mode without graphical
user interface (GUI) elements, enabling work-
flows on systems with no computer monitor
(for example, a remote server) — all ImageJ2
commands are available in headless mode,
although functions of the original ImageJ
are limited by its underlying dependence on
GUI elements.

In summary, PyImageJ gives users access
to the best of both Python and ImageJ, by
fundamentally integrating the two software
ecosystems. PyImageJ supports robust data
interoperability between both Python and
ImageJ, enabling users to create workflows that
incorporate both Python and ImageJ elements.

Data availability
All data used for PyImageJ usecases are avail-
able at https://github.com/imagej/pyimagej/
tree/master/doc/sample-data.

Code availability
The source code, documentation, tutorials
and use cases for PyImageJ, which is made
available under the open-source Apache
software license, can be found online at
https://github.com/imagej/pyimagej.

Curtis T. Rueden    1, Mark C. Hiner1,
Edward L. Evans III1,2, Michael A. Pinkert1,2,3,
Alice M. Lucas4, Anne E. Carpenter    4,
Beth A. Cimini    4 and
Kevin W. Eliceiri    1,2,3,5 
1Center for Quantitative Cell Imaging,
University of Wisconsin-Madison, Madison,
WI, USA. 2Morgridge Institute for Research,
Madison, WI, USA. 3Department of Medical
Physics, University of Wisconsin-Madison,
Madison, WI, USA. 4Imaging Platform, Broad
Institute of Harvard and MIT, Cambridge, MA,
USA. 5Department of Biomedical Engineering,
University of Wisconsin-Madison, Madison,
WI, USA.

 e-mail: eliceiri@wisc.edu

Published online: 17 October 2022

References
1.	 Tinevez, J.-Y. et al. Methods 115, 80–90 (2017).
2.	 Harris, C. R. et al. Nature 585, 357–362 (2020).
3.	 Virtanen, P. et al. Nat. Methods 17, 261–272 (2020).
4.	 Gómez-de-Mariscal, E. et al. Nat. Methods 18,

1192–1195 (2021).
5.	 Rueden, C. T. et al. BMC Bioinformatics 18, 529 (2017).
6.	 Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).
7.	 Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S.

Bioinformatics 28, 3009–3011 (2012).
8.	 Sofroniew, N. et al. napari/napari: 0.4.15rc1 (Zenodo,

2022); https://doi.org/10.5281/zenodo.6325333
9.	 Stirling, D. R. et al. BMC Bioinformatics 22, 433 (2021).
10.	 Arganda-Carreras, I. et al. Bioinformatics 33,

2424–2426 (2017).

Acknowledgements
This package was only made possible through the work of
jgo and SciJava plugin frameworks. We are grateful for the
contributions of P. Hanslovsky, the architect of imglyb and
co-author of jgo. The authors also thank several individuals
for various contributions and suggestions including E. T. A
Dobson, J. Eglinger, S. Griffin, R. Haase, Y. Liu, H. Mary, and
L. Yang. We also thank the PyImageJ user community for their
great input and feedback. This work has been supported by
the National Institutes of Health (P41GM135019 to A.E.C.,
B.A.C. and K.W.E.; T32CA009206 to M.A.P.; T32GM008349
to M.A.P.); Chan Zuckerberg Initiative funding to B.A.C.,
C.T.R. and K.W.E.; National Science Foundation (1429045 to
K.W.E.); and additional internal funding from the Laboratory
for Optical and Computational Instrumentation and the
Morgridge Institute for Research.

Author contributions
Code concept and design was done by C.T.R., M.H. and
K.W.E. PyImageJ coding development and implementation
was done by C.T.R., M.C.H. and E.L.E.; case work by C.T.R.,
M.C.H., E.L.E., M.A.P., A.M.L., B.A.C. and K.W.E.; manuscript
organizing and writing by C.T.R., M.C.H., E.L.E.,M.A.P.,
A.M.L., A.E.C., B.A.C. and K.W.E.; and funding and project
administration by A.E.C., B.A.C. and K.W.E.

Competing interests
The authors declare no competing interests.

Additional information
Peer review information Nature Methods thanks Guillaume
Jacquemet, Juan Nunez-Iglesias and Daniel Sage for their
contribution to the peer review of this work.

http://www.nature.com/naturemethods
https://github.com/imagej/pyimagej/tree/master/doc/sample-data
https://github.com/imagej/pyimagej/tree/master/doc/sample-data
https://github.com/imagej/pyimagej
http://orcid.org/0000-0001-7055-6707
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0001-9640-9318
http://orcid.org/0000-0001-8678-670X
mailto:eliceiri@wisc.edu
https://doi.org/10.5281/zenodo.6325333

	PyImageJ: A library for integrating ImageJ and Python

	Acknowledgements

	Fig. 1 The software architecture of PyImageJ.

