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Human‑level COVID‑19 diagnosis 
from low‑dose CT scans using 
a two‑stage time‑distributed 
capsule network
Parnian Afshar1,7, Moezedin Javad Rafiee2, Farnoosh Naderkhani1, Shahin Heidarian3, 
Nastaran Enshaei1, Anastasia Oikonomou  4, Faranak Babaki Fard5, Reut Anconina4, 
Keyvan Farahani6, Konstantinos N. Plataniotis7 & Arash Mohammadi  1*

Reverse transcription-polymerase chain reaction is currently the gold standard in COVID-19 diagnosis. 
It can, however, take days to provide the diagnosis, and false negative rate is relatively high. Imaging, 
in particular chest computed tomography (CT), can assist with diagnosis and assessment of this 
disease. Nevertheless, it is shown that standard dose CT scan gives significant radiation burden to 
patients, especially those in need of multiple scans. In this study, we consider low-dose and ultra-low-
dose (LDCT and ULDCT) scan protocols that reduce the radiation exposure close to that of a single 
X-ray, while maintaining an acceptable resolution for diagnosis purposes. Since thoracic radiology 
expertise may not be widely available during the pandemic, we develop an Artificial Intelligence 
(AI)-based framework using a collected dataset of LDCT/ULDCT scans, to study the hypothesis 
that the AI model can provide human-level performance. The AI model uses a two stage capsule 
network architecture and can rapidly classify COVID-19, community acquired pneumonia (CAP), 
and normal cases, using LDCT/ULDCT scans. Based on a cross validation, the AI model achieves 
COVID-19 sensitivity of 89.5%± 0.11 , CAP sensitivity of 95%± 0.11 , normal cases sensitivity 
(specificity) of 85.7%± 0.16 , and accuracy of 90%± 0.06 . By incorporating clinical data (demographic 
and symptoms), the performance further improves to COVID-19 sensitivity of 94.3%± 0.05 , CAP 
sensitivity of 96.7%± 0.07 , normal cases sensitivity (specificity) of 91%± 0.09 , and accuracy of 
94.1%± 0.03 . The proposed AI model achieves human-level diagnosis based on the LDCT/ULDCT 
scans with reduced radiation exposure. We believe that the proposed AI model has the potential to 
assist the radiologists to accurately and promptly diagnose COVID-19 infection and help control the 
transmission chain during the pandemic.

Since the beginning of the coronavirus disease (COVID-19) outbreak in December 2019 in Wuhan, China, a 
global healthcare crisis has emerged1. Real-time reverse transcription-polymerase chain reaction (RT-PCR) 
is currently considered as the gold standard method in COVID-19 diagnosis. RT-PCR is, however, prone to a 
number of limitations, i.e., besides being time consuming, it is associated with high false-negative rate in different 
clinical samples2. Due to high sensitivity and rapid access, chest computed tomography (CT) scan has been the 
main imaging modality for diagnosis, prognostic assessment, and detection of complications of COVID-193–5. 
The most common manifestations of COVID-19 pneumonia in chest CT scan are multifocal ground-glass opaci-
ties (GGO) with or without consolidative areas, predominantly having peripheral, lower-lobes, and posterior 
anatomic distribution4,5. CT scan can contribute to assessing the complications, extent of COVID-19 involve-
ment, and risk of intensive care unit (ICU) admission.
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The main concern of widespread use of CT scan as a screening tool for suspected patients during the outbreak 
is the radiation exposure. In some scenarios, severely symptomatic patients will need multiple chest CT scans 
during the course of their disease. The cumulative effect of these multiple exposures can significantly increase 
the radiation dose. Studies6 have shown that the projected radiation to body organs during chest CT scan is 
highest in thyroid, lung, breast, and esophagus. Due to their longer life expectancy, higher dose-effective breast 
tissue and cell proliferation7,8, children and young women are more vulnerable to radiation exposure damage 
with increased risk of radiation-following malignancy. As low as reasonably achievable (ALARA)9 rule states 
that whenever radiation is expected, the exposure should be kept at the minimum achievable level such that the 
resulting scan still provides reasonable resolution.

Diagnostic accuracy of Low and Ultra-low-dose CT scan (LDCT and ULDCT) in detection and follow-up of 
pulmonary nodule and other lung pathologies has been previously established10. The radiation dose associated 
with standard chest CT is estimated at 7 mSv, which is reduced to 1–1.5 mSv with LDCT methods and as low as 
0.3 mSv with ULDCT ones. The advantage of the low dose protocols is the reduction of radiation dose by more 
than 80%. Recent studies11 have shown that DNA double-strand breaks and chromosome damage increased 
in patients undergoing a standard-dose CT scan while no effect on human DNA was demonstrated in patients 
undergoing low-dose CT scan. LDCT and ULDCT have shown significant accuracy in the detection of GGOs 
and consolidation in patients with pneumonia12. Since GGO and consolidation are the most common CT find-
ings of COVID-19, recently, replacing standard CT scan with LDCT and ULDCT has been recommended13 as 
a solution to decrease radiation exposure in COVID-19 patients. In a retrospective study14, LDCT with iterative 
reconstruction (IR) demonstrated sensitivity, specificity, positive predictive value, negative predictive value, and 
accuracy of about 90% in the diagnosis of COVID-19. In conjunction with other clinical findings, LDCT and 
ULDCT can potentially replace standard-dose for the evaluation of patients, in particular pregnant and young 
women, and pediatric populations, to decrease radiation exposure15.

While rapid detection of positive COVID-19 cases is of utmost importance, physicians and healthcare per-
sonnel are overwhelmed with increasing number of patients in need of immediate care and treatment. In other 
words, expert thoracic radiologists may not be available at all times to diagnose positive cases in a timely fash-
ion, leading to not only delays in treatment, but also further transmission of the virus by patients who are not 
promptly isolated. Recent studies16,17 have demonstrated the capabilities of artificial intelligence (AI) models in 
achieving human-level performance in detection of lung nodules from LDCT. Motivated by this, in this study 
we aim at developing an AI model based on deep learning architectures to distinguish COVID-19 from com-
munity acquired pneumonia (CAP) and normal cases, using LDCT and ULDCT. To the best of our knowledge, 
Reference18 is the only study considering LDCT in AI-based COVID-19 analysis, by simulating standard dose 
scans from low dose ones. The aforementioned study, however, uses synthesized data, i.e., it does not use real 
LDCT/ULDCT data from COVID-19 individuals, and does not deal with the disease diagnosis, which is the main 
focus of our research. We hypothesize that AI can achieve a human-level performance in diagnosing COVID-19 
based on LDCT and ULDCT scans.

We developed a two-stage deep learning model, shown in Fig.  1, built upon the capsule network 
architecture19,20, which takes segmented lung regions as inputs. The first stage of the proposed model is a capsule 
network responsible of detecting slices with evidence of infection (caused by COVID-19 or CAP). Following a 
prior research21, 10 most probable slices with infection, along with their infectious probability, are provided as 
input to the second stage, which analyzes all the candidates in parallel, making the decision by aggregating the 
outcome of each single candidate. The final output is the probability of the underlying case representing COVID-
19, CAP, or normal classes. While the first stage model is trained on slice-level labels provided by an experienced 
radiologist, the second stage is trained on patient-level labels. Expanding the proposed deep learning model, we 
incorporated clinical data, i.e., the output of the deep learning model is merged with clinical data and fed to a 
multi-layer perceptron (MLP), shown in Fig. 2, to make the final diagnosis.

Results
We collected a dataset of LDCT and ULDCT scans of 104 COVID-19 positive cases, and 56 normal cases, col-
lected in October 2020, December 2020, and January 2021, Babak Imaging Center, Tehran, Iran. Diagnosis of 
36.5% of the COVID-19 cases (38 cases) is confirmed with the RT-PCR test. The rest are specified by taking 
the consensus between 3 experienced thoracic radiologists (M.J.R., F.B.F., and A.O.), who labeled the dataset by 
taking the imaging findings, clinical characteristics (symptoms and history), and epidemiology into account. 
The three radiologists reached an agreement of 95.6%. They also scored the severity of the COVID-19 cases 
between 1 and 4, based on the percentage of the lung involvement. Four positive COVID-19 cases do not reveal 
any related imaging findings. As we did not have access to LDCT scans of CAP patients, we combined this 
dataset with 60 standard-dose volumetric CT scans22. Therefore, we ended up with a total of 220 patients. The 
dataset characteristics are shown in Table 1. P-values are obtained using logistic regression, by considering three 
binary scenarios of COVID-19 versus CAP and normal, CAP versus COVID-19 and normal, and normal versus 
COVID-19 and CAP. For ease of access, here we translate the first row of the table: “58.6% of the COVID-19 
patients are men, 58% of the CAP cases are men, 39.3% of the normal cases are men, Sex has a P-value of 0.7386 
when distinguishing COVID-19 from the other two classes, it has a P-value of 0.1848 when distinguishing 
CAP from the other two classes, and a P-value of 0.0314 when distinguishing normal from other two classes”. 
Finally, a fourth experienced thoracic radiologist (R.A.), blind to the ground-truth, labeled the collected dataset 
to compare the performance of the AI model with a human expert. The radiologist was first provided with only 
the CT scans, and then the clinical data.

To decrease bias towards a specific test set, we adopted a 10-fold cross validation approach to assess the per-
formance of the radiologist and the AI model, based on two scenarios of using CT scans only, and incorporating 
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Figure 1.   The proposed 2 stage deep learning model for COVID-19 diagnosis using LDCT/ULDCT. At the 
first stage, CT slices go through a capsule network, one by one, to detect those with evidence of infection. At the 
second stage, 10 most probable slices with infection detected in the previous stage go through a time-distributed 
capsule network, output of which determines the probability of COVID-19, CAP, and normal, after applying a 
global max pooling.

Figure 2.   The MLP model combining the output of the two-stage deep learning model with the clinical data. 
Clinical data includes demographic characteristics and 5 common COVID-19 and CAP symptoms. Four sets of 
fully connected layers determine the final output.

Table 1.   Characteristics of the collected dataset and CAP cases adopted from Reference22. In total, the study 
includes 220 patients. SD stands for standard deviation, M stands for male and F stands for female.

COVID-19 CAP Normal P-value: COVID-19 vs. rest P-value: CAP vs. rest P-value: Normal vs. rest

Sex M: 58.6%    F: 41.4% M: 58%       F: 42% M: 39.3%    F: 60.7% 0.7386 0.1848 0.0314

Age in years (Mean ± SD) 49.53± 15.5 57.78± 21.94 40.18± 15.37 0.7283 0.0003 0.0002

Weight in Kg (Mean ± SD) 80.75± 14.84 67.38± 12.96 75.91± 14.52 0.0001 0.0000 0.6881

Dyspnea 26.9% 18% 45% 0.8932 0.0091 0.0425

Cough 31.7% 53% 33.93% 0.1480 0.0160 0.4916

Fever 14.4% 36% 9% 0.5130 0.0242 0.0589

Chest pain 7% 0% 10.7% 0.7571 0.9999 0.6439

Fatigue 10.5% 0% 1.7% 0.0107 0.9999 0.2681
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the clinical data. The dataset is randomly split into 10 equal size test sets, leading to 10 sets each including 22 
cases. We made sure that each set contained 10% of the COVID-19, CAP, and normal cases, leading to 10 or 11 
COVID-19, 6 CAP, and 5 or 6 normal cases in each test set. The AI model is trained 10 times, setting one of the 
test sets aside and using the rest for training. Averaging over the 10 folds, the slice-level classifier in the first stage 
achieved accuracy of 89.88% , sensitivity of 88.24% , and specificity of 92.01% , in detecting the slices with infection.

Using only CT scans, we evaluated the developed deep learning model and compared it with the fourth tho-
racic radiologist, as shown in Table 2. Averaging over all the 10 folds, AI model achieves COVID-19 sensitivity 
of 89.5%± 0.11 , CAP sensitivity of 95%± 0.11 , normal sensitivity (specificity) of 85.7%± 0.16 , and accuracy of 
90%± 0.06 . The radiologist, on the other hand, achieves COVID-19 sensitivity of 89.4%± 0.12 , CAP sensitivity 
of 88.33%± 0.11 , normal sensitivity (specificity) of 100% , and accuracy of 91.8%± 0.07 . We tested the hypoth-
esis of the AI model and radiologist having the same performance, in term of accuracy, using a McNemar23 test 
with the significance level of 0.05, leading to P-values over the significance level for all the 10 folds. The lower 
specificity of the AI model conforms the non-specific COVID-19 findings24. COVID-19 sensitivity versus one 
minus specificity is plotted in the receiver operating characteristics (ROC) curve, shown in Fig. 3. Area under 
the curve (AUC) is 0.96± 0.03.

Based on the CT scans only, we analyzed the misclassified COVID-19 cases through all folds (11 cases in 
total), and studied their relation with the disease severity, coming to the conclusion that 4 out of 11 cases, did 
not have any related imaging findings, 5 were scored 1 by the three radiologists, one was scored 2, and only one 
case was scored at 3, which means the developed model is less likely to misclassify severe cases. Neither the 
developed model nor the experienced radiologist was able to detect the 4 COVID-19 cases without imaging 
findings, using CT scans only. Furthermore, since the CAP patients come from a different cohort and scanned 
with a standard dose, we visualized the model’s output for CAP cases, one of which is shown in Fig. 4, using 
Grad-CAM localization technique. This figure shows that the model is paying more attention to disease-related 
regions of the image, rather than dose-related ones. We performed the same localization technique on two slices 
with infection of the same COVID-19 patient, shown in Fig. 5.

Table 2.   Performance of the AI model and the radiologist blind to the labels, using only CT scans.

Fold

COVID-19 sensitivity CAP sensitivity Normal sensitivity Accuracy

Accuracy P-value COVID-19 AUC​AI Radiologist AI Radiologist AI Radiologist AI Radiologist

1 10

11

10

11

6

6

5

6

4

5

5

5

20

22

20

22
1 0.95

2 10

10

10

10

6

6

6

6

6

6

6

6

22

22

22

22
1 1

3 10

11

9

11

6

6

4

6

3

5

5

5

19

22

18

22
1 0.91

4 10

10

10

10

4

6

6

6

5

6

6

6

19

22

22

22
0.25 0.99

5 8

11

10

11

5

6

5

6

5

5

5

5

18

22

20

22
0.5 0.9

6 10

11

10

11

6

6

5

6

5

5

5

5

21

22

20

22
1 0.98

7 8

10

10

10

6

6

5

6

5

6

6

6

19

22

21

22
0.625 0.96

8 7

10

8

10

6

6

5

6

5

6

6

6

18

22

19

22
1 0.95

9 10

10

6

10

6

6

6

6

5

6

6

6

21

22

18

22
0.375 1

10 10

10

10

10

6

6

6

6

5

6

6

6

21

22

22

22
1 1

Total 89.5%± 0.11 89.4%± 0.12 95%± 0.11 88.33%± 0.11 85.7%± 0.16 100% 90%± 0.06 91.8%± 0.07 – 0.96± 0.03

Figure 3.   ROC curve for COVID-19 diagnosis (vs CAP and normal) using the proposed deep learning model 
and CT scans only.
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Using both CT scans and clinical data, we evaluated the developed deep learning model and compared it with 
the radiologist, as shown in Table 3. Averaging over all the 10 folds, AI model achieves COVID-19 sensitivity 
of 94.3%± 0.05 , CAP sensitivity of 96.7%± 0.07 , normal sensitivity (specificity) of 91%± 0.09 , and accuracy 
of 94.1%± 0.03 . The radiologist, on the other hand, achieves COVID-19 sensitivity of 94.4%± 0.05 , CAP sen-
sitivity of 93.3%± 0.08 , normal sensitivity (specificity) of 100% , and accuracy of 95.4%± 0.03 . We tested the 
hypothesis of the AI model and radiologist having the same performance, using LDCT and clinical data, in terms 
of accuracy, leading to P-values over the significance level for all the 10 folds. COVID-19 sensitivity versus one 
minus specificity is plotted in the receiver operating characteristics (ROC) curve, shown in Fig. 6. Area under 
the curve (AUC) is 0.96± 0.03.

Based on using both CT scans and clinical data, we analyzed the misclassified COVID-19 cases through all 
folds (6 cases in total), and studied their relation with the disease severity, coming to the conclusion that 3 out 
of 6 cases, did not have any related imaging findings, one was scored 1 by the three radiologists, and two cases 

Figure 4.   Grad-CAM visualization of one CAP slice. This figure shows that the proposed AI model is paying 
attention to relevant locations of the image.

Figure 5.   Grad-CAM visualization of two COVID-19 slices. This figure shows that the proposed AI model is 
paying attention to relevant locations of the image.
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were scored at 3. Incorporating the clinical data, the AI model can detect one of the four positive COVID-19 
cases, without having related imaging findings, whereas the radiologist did not detect any of them.

Finally, we tested the developed AI model, incorporating LDCTs and clinical data, on an extra set of 100 
positive COVID-19 patients, whose diagnosis are confirmed with RT-PCR test and are collected in a different 
time interval (narrow validation). These patients were not included in any of the 10 folds and are completely 
unseen to the model and radiologist. While 68 out of 100 cases have imaging findings, 32 do not reveal any 
related manifestations. Male cases constitute 53% of the total cases, and age average is 46.16 with a standard 
deviation of 14.07. The AI model correctly identifies all the 68 positive cases having imaging findings, whereas 
it detects only 3 of those not having related findings. Radiologist, on the other hand, correctly classifies 64 out 
of 68 patients having imaging findings as COVID-19 and classifies 4 as CAP. None of the cases without imaging 
findings are identified by the radiologist. The p-value between the AI model and radiologist’s sensitivity is 0.01.

Discussion
Although LDCT and ULDCT can reveal COVID-19 related findings and reduce the potential radiation-related 
harms, an accurate diagnosis requires full investigation by radiologists, which may not be possible during the 
outbreak. Based on our experiments, the proposed capsule network-based AI model has the potential to rapidly 
distinguish COVID-19 cases from CAP and normal ones with a human-level performance using LDCT and 
ULDCT, having a radiation dose of a single X-ray image. In other words, with minimal radiation, the developed 
AI system can assist the radiologists and contribute to controlling the chain of COVID-19 transmission.

To validate the proposed AI model, we considered two scenarios, as shown in Fig. 7. In the first scenario, the 
AI model is fed with only the images and compared with the radiologist blind to both ground truth and clinical 
data. Although this strategy does not follow routine clinical practice, the goal was to investigate the diagnostic 
potentials of the images without incorporating clinical data. In the second scenario, both images and clinical 
data are fed to the AI model which is accordingly compared to the radiologist blind only to the ground truth. We 

Table 3.   Performance of the AI model and the radiologist blind to the labels, using both CT scans and clinical 
data.

Fold

COVID-19 sensitivity CAP sensitivity Normal sensitivity Accuracy

Accuracy P-value COVID-19 AUC​AI Radiologist AI Radiologist AI Radiologist AI Radiologist

1 11

11

10

11

5

6

6

6

5

5

5

5

21

22

21

22
1 0.99

2 10

10

10

10

6

6

6

6

6

6

6

6

22

22

22

22
1 1

3 10

11

10

11

6

6

6

6

4

5

5

5

20

22

21

22
1 0.91

4 9

10

10

10

5

6

6

6

6

6

6

6

20

22

22

22
0.5 0.98

5 10

11

10

11

6

6

5

6

5

5

5

5

21

22

20

22
1 0.97

6 10

11

10

11

6

6

5

6

4

5

5

5

20

22

20

22
1 0.99

7 9

10

10

10

6

6

5

6

5

6

6

6

20

22

21

22
1 1

8 9

10

10

10

6

6

5

6

6

6

6

6

21

22

21

22
1 0.98

9 10

10

8

10

6

6

6

6

5

6

6

6

21

22

20

22
1 0.95

10 10

10

10

10

6

6

6

6

5

6

6

6

21

22

22

22
1 0.99

Total 94.3%± 0.05 94.4%± 0.05 96.7%± 0.07 93.3%± 0.08 91%± 0.09 100% 94.1%± 0.03 95.4%± 0.03 – 0.96± 0.03

Figure 6.   ROC curve for COVID-19 diagnosis (vs CAP and normal) using the proposed deep learning model 
and both CT scans and clinical data.
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showed that by incorporating the clinical data, COVID-19 sensitivity increases by 4.8%, CAP sensitivity increases 
by 1.7%, and normal sensitivity and accuracy increase by 5.3% and 4.1%, respectively.

It is worth noting that although the incorporated CAP cases are extracted from a different cohort, the moti-
vation is to investigate the capability of the AI model to distinguish COVID-19 from CAP, as these two have 
overlapping chest CT findings25. The fact that the CAP cases are screened using a standard-dose CT rather than 
LDCT and ULDCT can be considered as a limitation of our study, since low-dose screening is associated with 
less detection capabilities26. Nevertheless it is a common practice to construct datasets of CT scans acquired using 
different radiation doses27, in order to develop models generalized on larger datasets. Furthermore, although 
our COVID-19 and normal cases are scanned with either LDCT or ULDCT, the image quality of the latter can 
be counterbalanced using reconstruction techniques28.

Our study has some other limitations. First, the dataset is collected from a single centre, and experiments 
are required to verify its performance on data from external institutes, as it is critical to investigate if the model 
generalizes to diverse population29,30. Vulnerability to data shifts, and bias against underrepresented population29 
are also crucial to address before the AI model can be put into practice. It is worth mentioning that as the extra 
set of 100 positive COVID-19 patients are collected in a disjoint time interval from the original set, it can act 
as a narrow validation30. It is, however, collected from the same institute and thus does not account for broad 
validation. It is also of high interest to explore domain validation for COVID-19 diagnosis, where test set comes 
from different variants. Second, the sample size is relatively small. Verifying the model’s performance on larger 
multi-centre datasets is the goal of our upcoming studies. The capsule network used in our study, is capable 
of handling small datasets compared to conventional models and due to fewer trainable parameters it is less 
prone to over-fitting, however, larger datasets can still improve the performance of the model. We also aim at 
expanding the proposed AI model to predict the disease severity besides the diagnosis. Moreover, although as 
shown in Figs. 4 and 5 visualization of the AI model’s output shows it is paying attention to relevant regions, 
more research is required to increase its explainability. Low performance on COVID-19 cases without imaging 
finding is another limitation of the developed model.

In conclusion, we believe the developed AI model achieves human-level performance by incorporating LDCT/
ULDCT and clinical data, having the advantage of reducing the risks related to radiation exposure. This model 
can act as a decision support system for radiologists and help with controlling the transmission chain. As our 
developed AI model is not intended to be a primary diagnostic tool, we aim at testing the model alongside a 
thoracic radiologist to assess its performance as a decision support tool rather than a stand-alone system.

Methods
This study is conducted following the policy certification number 30013394 of Ethical acceptability for second-
ary use of medical data approved by Concordia University, Montreal, Canada. Informed consent is obtained 
from all the patients.

LDCT/ULDCT dataset.  The LDCT/ULDCT dataset consists of volumetric Low-dose chest CT scans of 104 
COVID-19 positive cases, and 56 healthy cases, collected in October 2020, December 2020, and January 2021, 
Babak Imaging Center, Tehran, Iran. 36.5% of the COVID-19 cases (38 cases) are confirmed with positive RT-

Figure 7.   The dataset consists of LDCTs and ULDCTs accompanied with clinical data and ground truth. Two 
scenarios are considered. First, only images are used for training and comparison with the radiologist. Second, 
both images and clinical data are utilized.
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PCR. Diagnosis for the rest of the cases is obtained by consensus between three experienced radiologists (M.J.R., 
F.B.F., and A.O.) with 95.6% agreement. The three radiologists have considered the following three main criteria 
when labeling the dataset:

•	 Imaging findings including GGOs, consolidation pattern, crazy paving, bilateral and multifocal lung involve-
ment, peripheral distribution, and lower lobe predominance of findings;

•	 Clinical findings including symptoms and history, and;
•	 Epidemiology

The CT slices of the confirmed COVID-19 cases are then labeled by the first radiologists as having evidence 
of infection or not. Furthermore, all the three radiologists have scored the severity of the COVID-19 cases, by 
assigning a number between 1 and 4, where 1 is a mild and 4 is a severe case. The final severity score is the aver-
age over the scores from three radiologists, rounded to the nearest integer. Severity is determined based on the 
percentage of the lung involvement, as follows:

•	 1: 1–24%
•	 2: 25–49%
•	 3: 50–74%
•	 4: ≥75%

Male and Female cases form 52% and 48% of the LDCT dataset, respectively, with the minimum age of 14 and 
maximum of 78. Male dominance is common in many COVID-19 datasets31, partly because men are more vul-
nerable to COVID-1932. Furthermore, no correlation between gender and CT finding is found out33. It is worth 
mentioning that to comply with the DICOM supplement 142 (Clinical Trial De-identification Profiles)34, we 
have de-identified all the CT studies.

The volumetric LDCT and ULDCT scans are obtained from a SIEMENS SOMATOM Scope scanner. All scans 
are in the axial view and reconstructed into 512× 512 images using the Filtered Back Projection method35. The 
radiation dose in standard chest CT scans is estimated at 7mSv, which is reduced to 1–1.5 mSv in LDCT scans 
and as low as 0.3 mSv in the ULDCT ones. For patients with > 60 kg body weight LDCT images are acquired 
using the mAs value of 20, kVp of 110 v, and the slice thickness of 2 mm, whereas for patients with the body 
weight of less than 60 kg the ULDCT images are obtained with 15 mAs.

As we did not have access to LDCT/ULDCT for CAP cases, we used a set of standard-dose volumetric chest 
CT scans of 60 patients22, collected before the start of pandemic from April 2018 to December 2019. This set 
contains 35 male and 25 female cases, with mean age of 57.7 and standard deviation of 21.7. The slices of the 
CAP set are also analyzed by the first radiologist to identify slices with evidence of infection. CAP images are 
acquired using tube current of 94–500 mA, kVp of 110–120 v, and the slice thickness of 2 mm, using SIEMENS 
SOMATOM Scope scanner.

As shown in Table 1, all cases are accompanied by demographic and clinical data, i.e., sex, age, weight, and 
presence or absence of 5 symptoms of cough, fever, dyspnea, chest pain, and fatigue. We compared the perfor-
mance of the proposed AI model with a fourth experienced radiologist (R.A.) who was blind to the labels, and 
classified the standard-dose and LDCT/ULDCT as COVID-19, CAP, and normal, first by means of the CT scans 
only, and then by incorporating the clinical data.

We also included an extra set of 100 positive COVID-19 patients, confirmed with positive RT-PCR. Male 
cases constitute 53% of the total cases, and age average is 46.16 with a standard deviation of 14.07. This set was 
collected in April 2021.

Data preprocessing.  We used a pre-trained U-Net-based lung segmentation model36, referred to as “U-net 
(R231CovidWeb)”, to segment lung regions and discard irrelevant information. This segmentation model is 
fine-tuned on COVID-19 images, which increases its performance and reliability for the problem at hand. Con-
sequently, all images are downsampled from the original size of 512× 512 pixels to 256× 256 pixels.

Two stage deep learning model.  The proposed two stage deep learning model, shown in Fig. 1, consists 
of two consecutive capsule networks19,20, which are advantageous over commonly used convolutional neural 
networks (CNNs) in handling the spatial relations between image instances. The segmented chest CT scans are 
the inputs to the first stage, which identifies images with evidence of infection. The slice with infection could be 
related to a CAP or COVID-19 patient. 10 most probable slices with infection are then selected as inputs to the 
second stage, which consists of time-distributed capsule networks, referring to processing slices at the same time 
through the same model. In this stage, classification probabilities generated from individual slices go through 
a global max pooling operation to make the final decision. Next, the two stages are explained in more details.

Stage 1: capsule network.  Capsule networks are relatively new AI architectures proposed to overcome some key 
shortcomings of traditional deep neural networks and provide more informative features. The key to Capsule 
networks’ richer feature representation is the use of vectors (collection of neurons referred to as a Capsule) 
instead of scalars (single neurons). In other words, Capsules are groups of neurons acting as one unit, which is 
activated depending on the probability that a specific entity exists in the input. Capsule networks consist of lay-
ers of these Capsules stacked together to form a deep neural network and learn discriminative features from the 
input data. While conventional deep learning solutions are incapable of conveying information about the relative 
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correlations between the extracted features, Capsule networks can address this issue (via their routing by agree-
ment mechanism) and better model existing correlations inside the network. Through the routing by agreement 
process, capsules in a lower layer try to predict the output of the capsules in the next layer, and predictions are 
given priorities based on their correctness. The amplitude of the capsule vectors in the last layer represents the 
probability that the input image belongs to a specific target class. Another key advantage of Capsule networks is 
their ability to collect more detailed information with a smaller number of trainable parameters37. This in turn 
results in achieving better performance with a reduced number of input data, making them the ideal AI model 
for the problem at hand.

The first stage of the proposed AI framework is responsible for identifying the slices demonstrating infection 
(caused by COVID-19 or CAP) in a series of CT images corresponding to a patient. The first stage will provide 
a subset of candidate slices to be analyzed in the next stage, which focuses only on the disease type. To train the 
first stage, we used 2D CT images and their corresponding label (infectious vs non-infectious) to construct a 
slice-level classifier whose output determines the probability of the input image belonging to a specific target class 
(infectious vs non-infectious). We then extracted 10 slices with the highest infection probability for each patient 
to be used as the input of the second stage. Given the specific characteristics of the COVID-19 disease mani-
festation, which include multi-focal GGOs, predominantly in peripheral, lower-lobes, and posterior anatomic 
areas of the lung, we have adopted a capsule network-based classifier instead of the conventional CNN-based 
classifiers. As demonstrated in our previous studies20, capsule networks are highly capable of capturing spatial 
relations38 between the components in medical images using small datasets and fewer parameters compared to 
their counterparts, which is of utmost importance in the case of COVID-19 disease.

The architecture of the first stage initiates with a stack of four convolutional layers, one pooling layer, and one 
batch normalization layer which are augmented by two shortcut connections to deliver shallow features to the 
deeper layers of the model. These layers are then followed by a stack of three capsule layers to generate the final 
output, which is the probability of the input image belonging to the related target class. It is worth noting that 
in the first stage, we are dealing with an imbalanced dataset with more number of slices without the evidence 
of infection. To cope with this imbalanced dataset, we have modified the loss function in the training step and 
considered a higher penalty for the errors in the slices demonstrating infection.

Stage 2: time‑distributed capsule network.  The second stage of the proposed AI framework is a time-distributed 
capsule network that takes the 10 candidates from the previous stage as inputs. These images are processed in 
parallel through capsule networks with the same architecture sharing all the trainable weights. These capsule 
networks consist of three convolutional layers, one batch normalization and one max pooling layer. The output 
of the last convolutional layer is reshaped to form the primary capsules, which then go through two capsule lay-
ers. The final capsule layer for each candidate corresponds to the three classes of COVID-19, CAP, and normal. 
To take into account the probability of the candidate slice being infected, COVID-19 and CAP classes are multi-
plied by the infectious probability generated by the first stage. The normal class is also multiplied by one minus 
the infectious probability. At the end, a global max pooling operation is applied to the outputs of the capsule 
networks corresponding to candidate slices, to make the final decision.

We trained the second stage time-distributed capsule network with an Adam optimizer with learning rate 
of 1e−4 , batch size of 8, and 150 epochs. Similar to the first stage, we used a modified margin loss function to 
consider more penalty for the minority class. Margin loss is the original loss function for capsule networks 
introduced in Reference19.

Incorporating the clinical data.  After training the two-stage deep learning model, output probabilities 
of the three classes (COVID-19, CAP, normal) are concatenated with the 8 clinical data (demographic and 
symptoms, i.e., sex, age, weight, and presence or absence of 5 symptoms of cough, fever, dyspnea, chest pain, and 
fatigue) and fed to a multi-layer perceptron (MLP) model, shown in Fig. 2. This model has 4 fully-connected 
layers with 64 neurons, where each layer is followed by batch normalization. The last layer includes 3 neurons 
with a “Softmax” activation function. We trained the MLP model with a cross-entropy loss and Adam optimizer 
with the learning rate of 1e−4 , batch size of 16, and 500 epochs.

Grad‑CAM visualization.  We utilized the Grad-CAM localization mapping method39 to provide a deep 
insight into the intermediate layers and identify what components in a CT image have obtained the most atten-
tion by the model. The Grad-CAM method extracts the spatial information, which is preserved by the convo-
lutional layers and specifies the parts in the image having the most contribution to the final prediction. More 
specifically, the Grad-CAM method generates a localization heatmap corresponding to each layer and the target 
class to determine the locations to which the model paid the most attention. This localization heatmap is derived 
by a weighted average of all feature maps in the convolutional layer followed by a Rectified Linear Unit (ReLU) 
activation function.

Statistical analysis.  K-fold cross-validation40 is a statistical approach to assess the performance of a model 
on an unseen dataset. According to this approach, the original dataset is randomly split into K equal number 
of samples, and through K iterations of training and testing, each of the K sets is set aside for testing, and the 
rest is used for training. This approach is used in this study to evaluate the performance of the AI model as well 
as the radiologist blind to the labels, where K is set to 10. Performance of each fold is reported, along with the 
mean and standard deviation over all the folds. Furthermore, in each K fold, 30% of the training set is used for 
the validation of the associated model, according to which the most optimal model is selected and tested on the 
test set. McNemar23 test, with the significance level of 0.05, is used to test the hypothesis of human and AI model 
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having the same performance. Logistic regression is applied to assess the significance of clinical factors in three 
binary classification scenarios, i.e., COVID-19 versus CAP and normal, CAP versus COVID-19 and normal, and 
normal versus COVID-19 and CAP.

Data availability
Data is publicly available at “https://​ieee-​datap​ort.​org/​open-​access/​covid-​19-​low-​dose-​and-​ultra-​low-​dose-​ct-​
scans”.

Code availability
Codes are publicly available at “https://​github.​com/​Parni​anA/​LDCT-​COVID”.
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