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Distributed lag inspired 
machine learning for predicting 
vaccine‑induced changes 
in COVID‑19 hospitalization 
and intensive care unit admission
Atikur R. Khan  1*, Khandaker Tabin Hasan2, Sumaiya Abedin3 & Saleheen Khan4

Distributed lags play important roles in explaining the short-run dynamic and long-run cumulative 
effects of features on a response variable. Unlike the usual lag length selection, important lags with 
significant weights are  selected in a distributed lag model (DLM). Inspired by the importance of 
distributed lags, this research focuses on the construction of distributed lag inspired machine learning 
(DLIML) for predicting vaccine-induced changes in COVID-19 hospitalization and intensive care unit 
(ICU) admission rates. Importance of a lagged feature in DLM is examined by hypothesis testing and 
a subset of important features are selected by evaluating an information criterion. Akin to the DLM, 
we demonstrate the selection of distributed lags in machine learning by evaluating importance scores 
and objective functions. Finally, we apply the DLIML with supervised learning for forecasting daily 
changes in COVID-19 hospitalization and ICU admission rates in United Kingdom (UK) and United 
States of America (USA). A sharp decline in hospitalization and ICU admission rates are observed when 
around 40% people are vaccinated. For one percent more vaccination, daily changes in hospitalization 
and ICU admission rates are expected to reduce by 4.05 and 0.74 per million after 14 days in UK, and 
5.98 and 1.04 per million after 20 days in USA, respectively. Long-run cumulative effects in the DLM 
demonstrate that the daily changes in hospitalization and ICU admission rates are expected to jitter 
around the zero line in a long-run. Application of the DLIML selects fewer lagged features but provides 
qualitatively better forecasting outcome for data-driven healthcare service planning.

Distributed lags regulate the characteristics of a time series and a DLM is used to infer the short-and long-run 
dynamic behavior between the predictor and response variables1–3. Regression based inflexible statistical learn-
ing methods like DLM are used to conduct statistical inferences. On the other hand, flexible and supervised 
learning methods such as regression tree (RT), random forest (RF), support vector regression (SVR), and deep 
neural network (DNN) are known for their predictive performances4–7. In the presence of time-lagged relation-
ship, selection of lag length is one of the key steps in time series modelling. In fact, a well-defined lag length is 
selected and all lags up to that time period are included in the model. However, this type of selection may not be 
appropriate in some cases, for example, to explore the dynamic relationship between vaccination and hospitaliza-
tion rates. Vaccine requires enough time (few days to few weeks) to prompt the immune system to fight against 
the virus8–10. Thus not all lags are deemed to be important in predicting the hospitalization rates in response to 
vaccination rates, and a DLM with lag selection is preferred in this case. Akin to the DLM, distributed lags are 
likely to affect the machine learning and our main objective in this paper is to explore the distributed lag inspired 
machine learning (DLIML) in forecasting COVID-19 hospitalization and ICU admission rates.

A time series of length n may form n− 1 lagged features to express the nth term of the response as a func-
tion of the n− 1 lagged features. If all the lagged features {xn−k : k = 1, . . . , n− 1} are considered in predicting 
the nth term xn , the number of features simply exceeds the effective sample size. In practice, dimensionality 
problem arises for a univariate time series when the number of it’s lagged features exceeds the half of the series 
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length for decomposition of trajectory (lagged feature) matrix11. If the data generating mechanism is unknown 
in real world scenarios, we may apply dimension reduction method for feature engineering12,13 to enhance the 
predictive performance of any supervised learning algorithm. Since the number of lagged features and effective 
sample size are inversely related, passing a higher number of lagged features through any dimension reduction 
technique will reduce the effective sample size. Alternatively, we may reduce the search space for lagged features 
by evaluating distributed lags in the DLM to explore any short-run dynamic and long-run cumulative effects.

Though a search for distributed lags may be completely data-driven, some background knowledge may pro-
vide an insight regarding the search space. Some earlier studies have shown that hospitalization and ICU admis-
sion rates are affected by the widespread vaccination for infectious diseases like influenza, human papilloma virus 
infection, and COVID-19 infection9,14,15. A negative association has been found between the vaccination rate 
and hospitalization rate in different states in USA16. Compared to unvaccinated individuals, significantly lower 
hospitalization and ICU admission rates are found for vaccinated individuals in Bahrain17. Though COVID-19 
vaccination has been found to decline the hospitalization and ICU admission numbers, a time delay of around 
two weeks has been found in some studies to observe these effects8,9. Thus the observational studies in hospitals 
reveal a time-lagged relationship of vaccination and its impact on hospitalization. Given the nature of time-lagged 
relationship, not all lagged features will play important roles in predicting the hospitalization and ICU admis-
sion rates. Thus a vaccine-induced DLM and DLIML will be utilized to explore the short-and long-run effects 
of vaccination on hospitalization and ICU admission rates, and we utilize these relationships further to forecast 
daily changes in hospitalization and ICU admission rates in UK and USA.

Data and methods
We have extracted vaccination data along with the daily number of admissions in hospital and ICU on June 15, 
2021 from the publicly available website https://​ourwo​rldin​data.​org/​covid-​vacci​natio​ns discussed in18. After data 
cleaning, we only obtain enough data on vaccination, hospitalization, and ICU admissions for UK and USA. In 
our study, we have considered daily time series of length n = 77 days (11 weeks) from March 23, 2021. Three 
time series that we have examined to explore the time-lagged relationships and dynamics of daily changes are: 
the percentage of population received at least one dose of COVID-19 vaccine (VAC), the number of patients in 
hospital per million (HOSP), and the number of ICU admissions per million (ICU). These time series shown in 
Fig. 1 demonstrate that as the vaccination rate increases, the hospitalization and ICU admission rates decrease 
over time.

In the next subsequent sections, we explore dynamic relationships among these three time series both for 
dynamic marginal and long-run cumulative effects in response to changes in vaccination rates. Later, we utilize 
the dynamic relationships for forecasting the growths of hospitalization and ICU admission rates. Thus we split 
the data into training and test time series with the first 10 weeks (70 days) data as training data for model build-
ing and the last week’s data as test data for model evaluation.

Distributed lags for vaccination rates
Vaccination is one of the most preferred options to reduce the transmission and control an epidemic. Vaccine 
produces antibody in the body that fights against the virus and prompts immune system to respond to a pathogen. 
A vaccinated person’s immune system becomes more ready to fight against a pathogen and is less likely to suffer 
from serious illness even if exposed to the pathogen. Though it was thought to be an illusionary assumption at 
the beginning without enough data on COVID-19 vaccine-induced population level immunity to reduce the 
transmission to return back to normalcy towards pre-COVID-19 state, it was hypothesized to reduce the severity 
of the disease19. Akin to other infectious diseases such as influenza infection14, mass vaccination would likely to 
reduce the number of critically infected patients requiring hospital admission or ICU support.

Once the first dose of vaccine is received, body starts producing antibody and it takes some times to prompt 
immune system to respond to a pathogen. In a study on antibody response to seronegative and seropositive 
persons from single dose mRNA vaccine, seronegative persons are found to have relatively low SARS-CoV-2 IgG 
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Figure 1.   Percentage of people received at least one dose of vaccine (vaccinated), daily death per million 
(death), patients in hospitals per million (hospitalized), and patients in intensive care unit per million (ICU) 
since March 23, 2021.
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responses within 9–12 days after vaccination whereas seropositive persons are found to develop high antibody 
titers within days even in some cases within 4 days. However, higher degrees of response to single dose vaccine 
is reported for seronegative persons around a time lag of 20 days20. In an early study in USA, all participants 
were found to develop detectable SARS-CoV-2 IgG antibodies in serum samples by 15 days following the first 
vaccination dose21. These results demonstrate that there would be a time-lagged relationship between vaccination 
and hospital admission rates. As more and more people become vaccinated over time, fewer number of patients 
would require hospital admission or ICU support. Thus a dynamic model can be used to explore the time-lagged 
relationships of hospitalization and ICU admission rates with vaccination rates.

A DLM that explores the effect of a regressor x on y over time can be expressed as

where ǫt is a stationary term with E(ǫt) = 0 , Var(ǫt) = σ 2 , and Cov(ǫt , ǫs) = 0 for t  = s . The lag weights βs for 
s = 1, . . . , q collectively represent the lag distribution and define the pattern how x affects y over time1,2,22. The 
dynamic marginal effect of x on y at the sth lag is

for s = 1, . . . , q . The dynamic marginal effect is essentially an effect of temporary change in x on y, whereas the 
long-run cumulative effect 

∑q
s=1 βs measures how much y will be changed in response to a permanent change 

in x when both x and y are stationary1.
Assuming xt is the vaccination rate and yt is the hospitalization rate in Eqs. (1)–(2), we may explore the tem-

porary dynamic marginal effect and long-run cumulative effect of vaccination on hospitalization rates. Similarly, 
we may compute the temporary dynamic marginal effect and long-run cumulative effect of vaccination on ICU 
admission rates.

Daily changes in hospitalization per million.  The daily change in hospitalization per million is 
△HOSPt = HOSPt −HOSPt−1 and the daily change in vaccination rate is △VACt = VACt − VACt−1 , where 
t = 2, . . . , n . Akin to the DLM in Eq. (1), we may define a dynamic model as

where s ∈ I refers to a lag distribution that consists of time lags from the set of integers and not all βs contribute 
significantly as the vaccine requires some times to prompt the immune system to respond to the pathogen. 
Estimates of parameters for a DLM of △HOSP are provided in Table 1.

Vaccination is supposed to reduce the hospital admission rates. We have found that a temporary dynamic 
marginal effect is negative only around or after the 14th lag in the DLM of △HOSP for UK and USA. A positive 
dynamic marginal effect refers to the increase of △HOSP whereas a negative dynamic marginal effect refers to 
the decrease of △HOSP in response to lagging △VAC . For one percent increase in the daily vaccination (one unit 
increase in △VAC ) in UK, daily change in hospitalization rate ( △HOSP ) is decreased by 4.05 after the 14th day. 
The dynamic temporary marginal effects on △HOSP and △ICU  in USA become negative after the 17th day and 
20th day, respectively. This is an indication of 4.70 per million reduction in △HOSP for one percent increase in 
the daily vaccination (one unit increase in △VAC ) in USA in 17 days apart. Similarly, a one percent increase in 
vaccination rate in USA seems to result in 1.04 per million reduction in △ICU after the 20th day. Figure 2 shows 
that the original and predicted △HOSP are mostly negative with some fluctuations around zero over time, which 
provides an insight that a positive dynamic marginal effect results in less negative changes whereas a negative 

(1)yt = α +

q
∑

s=0

βsxt−s + ǫt ,

(2)
δyt+s

δxt
=

δyt

δxt−s
= βs ,

(3)△HOSPt = α +
∑

s∈I

βs△VACt−s + ǫt ,

Table 1.   Distributed lag model for hospitalization ( △HOSP ) in UK and USA. Here, the intercept term refers 
to α in Eq. (3).

Country Model term Estimate p-value

UK

(Intercept) − 1.5013 0.0000

△VACt−4 2.0530 0.0204

△VACt−9 4.5311 0.0000

△VACt−13 2.5950 0.0457

△VACt−14 − 4.0476 0.0018

USA

(Intercept) − 2.2786 0.0000

△VACt−4 5.4082 0.0000

△VACt−16 4.7100 0.0013

△VACt−17 − 4.7050 0.0288

△VACt−18 4.4492 0.0101

△VACt−20 − 5.9836 0.0000
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dynamic marginal effect results in more negative changes in hospitalization rates. Regardless of more or less 
negative changes in hospitalization rates in response to dynamic marginal effect of changes in vaccination rates, 
long-run cumulative effects ( 

∑

β̂s = 5.1315 for UK and 
∑

β̂s = 3.8788 for USA) will yield less negative change 
in hospitalization rates over time. Thus the vaccination is going to significantly reduce the hospitalization rates 
in long-run. As more and more people are vaccinated, △VAC will tend to zero over time and △HOSP is expected 
to jitter around the zero line in a long-run.

Daily changes in ICU admission per million.  Akin to the DLM in Eq. (1), we may define a dynamic 
model for ICU admission rates as

where s ∈ I  forms a lag distribution as has been explained in Eq.  (3), and △ICUt = ICUt − ICUt−1 for 
t = 2, . . . , n . Estimates of parameters from this model are shown in Table 2.

A minimum of 2 weeks (14 days) lag is found significant in the DLM of △ICU  in response to △VAC . Thus 
any daily change in ICU admission can be explained by the changes in vaccination rates with a dynamic marginal 
effects of 2 weeks or more time lags. As can be seen in Fig. 3, daily changes in ICU admission rates per million 
are mostly negative with some jittering changes around zero over time. Thus any positive dynamic marginal 
effect will yield less negative change and any negative dynamic marginal effect will incur more negative change 
in ICU admission rates. The long-run cumulative effect (sum of dynamic marginal effects, 

∑

β̂s = 0.2152 ) of 
△VAC on △ICU  for UK is positive, which mimics that the daily changes in ICU admission ( △ICU  ) will be less 
negative over time. The long-run cumulative effect ( 

∑

β̂s = 0.9210 ) of △VAC on △ICU  for US is also positive. 
Thus, in a long-run, changes in ICU admission ( △ICU  ) will be jittering around zero as more and more people 
become vaccinated rendering the daily changes in vaccination rates ( △VAC ) to zero.

Sliding window correlation
Dynamic relationships between two time series may lead to a functional connectivity where the connectivity may 
exhibit dynamic changes within a time scale23,24. We already have explored the dynamic relationship between 
vaccination rates and hospitalization rates where the functional relationship has been expressed by the DLM. 
However, the functional connectivity changes over time as the dynamic marginal effects can be positive or nega-
tive. Such changes in dynamic relationship between two time series can be examined by computing correlation 
between two lagged variables over a sliding window23,24.

(4)△ICUt = α +
∑

s∈I

βs△VACt−s + ǫt ,
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Figure 2.   Original and predicted △HOSP since March 23, 2021 in (a) United Kingdom and (b) United States.

Table 2.   Distributed lag model for ICU admission ( △ICU ) in UK and USA. Here, the intercept term refers to 
α in Eq. (4).

Country Model term Estimate p-value

UK

(Intercept) − 0.1106 0.0336

△VACt−13 0.5654 0.0755

△VACt−14 − 0.7366 0.0288

△VACt−16 0.9321 0.0005

△VACt−19 − 0.5457 0.0006

USA

(Intercept) − 0.5858 0.0000

△VACt−16 1.1634 0.0000

△VACt−18 0.8003 0.0027

△VACt−20 − 1.0427 0.0000
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As the sliding window crawls over the series of length n with a window size m and time lag k, we can compute 
n− (m+ k)+ 1 correlations corresponding to the time points (m+ k), . . . , n . These correlations show the time 
dependent changes in dynamic relationship between two time series. Since the DLM of △HOSP on △VAC pro-
vides coefficients corresponding to the significant time lag and the smallest lag in the model is s = 4 , we choose 
k = 4 and m = 14 (2 weeks window) to obtain sliding window correlation to explore the dynamic relationship 
between HOSP and VAC. Similarly, we compute sliding window correlation between ICU and VAC time series. 
Computed sliding window correlations are shown in Fig. 4.

By comparing the correlation curves in Fig. 4 for UK and USA, we find that the correlations are almost same 
around the 50th days. Though the correlation curves in US show highly positive correlations at the beginning, 
both curves show sharp decline with highly negative correlation around the 40th day. Such dynamic nature in 
correlation can be characterized with the fewer number of vaccinated people at the beginning that could not 
cause significant reduction in hospitalization and ICU admission rates. As the time passes, more people become 
vaccinated and highly negative correlation reflects huge reduction in COVID-19 patients requiring hospitaliza-
tion and ICU admission. More than 40% people become vaccinated (received at least one dose of vaccine for 
COVID-19) by the 50− (m+ k) = 32 th day in USA and a sharp decline of correlation is achieved afterwards. 
On the other hand, correlation curves seem to be very close to − 1 at the beginning and keeps rising further after 
the 60th day in UK. This dynamic nature of correlation can be an effect of high vaccination rate in UK at the 
beginning of this study period. Because of a fast track vaccination, more than 40% people become vaccinated in 
UK soon after the vaccination campaign and highly negative correlations are observed both for the hospitaliza-
tion and ICU admission rates even from the beginning of our study period. However, hospitalization and ICU 
admission rates do not decrease too much once more than 50% people are vaccinated, which results in more 
deviation of correlation from − 1.

Distributed lag inspired machine learning
We already have explored that not all lagged features are significant in the fitted DLMs. Consequently, consecu-
tive lag orders may or may not be found significant in DLMs. As has been shown in Table 1, DLM of △HOSPt 
for the predictor △VACt−k has a lag distribution of k ∈ {4, 9, 13, 14} for UK data, whereas the DLM for USA data 
has a lag distribution of k ∈ {4, 16, 17, 18, 20} . Such distributions are observed because of the exclusion of many 
redundant lagged features from these models. Moreover, almost 75% of lagged features are found redundant 
in the DLMs in Tables 1 and 2. Thus we explore distributed lags in machine learning for prediction of △HOSP 
and △ICU .
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Figure 3.   Original and predicted changes in ICU admission ( △ICU ) since March 23, 2021 in (a) United 
Kingdom and (b) United States.
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vaccination rates in (a) United Kingdom and (b) United States.
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Distributed lags in regression tree.  A regression tree is built through a process of binary recursive parti-
tioning. Input variables are recursively partitioned by values until the terminal nodes and prediction of response 
variable is made by estimating a regression function. However, inclusion of irrelevant input variables (features) 
may affect the predictive performance of the model by increasing the mean square error (MSE). So, variable 
(feature) importance score is computed by evaluating the reduction of MSE attributed to each feature at each 
split. A higher importance score refers to more relevance of the feature in predicting the response variable25,26.

Importance scores of lagged features in RT models are shown in Fig. 5. Not all lagged features are found 
to contribute in improving the model. The distributed lags k ∈ {3, 4, 2, 9, 11, 10, 19, 20} of △VACt−k are 
found to be important for predicting △HOSPt and k ∈ {10, 4, 2, 9, 18, 3, 11, 12, 17} are found to be important 
for predicting △ICUt from UK data. Similarly, when RT is implemented to USA data, the distributed lags 
k ∈ {18, 11, 4, 8, 7, 1, 19, 5, 20} and k ∈ {8, 1, 7, 14, 19, 11, 4, 12, 10, 18} are found to be important for predicting 
△HOSPt , and △ICUt respectively in response to △VACt−k.

Distributed lags in random forest.  For regression with a RF, the MSE is computed on the out-of-bag 
data for each tree, and then the same is computed after permuting a variable. The differences are averaged and 
normalized by the standard error to compute an overall importance score. By randomly permuting a feature, 
original association with the response is broken and the inclusion of permuted feature in the RF model with 
other non-permuted features increases the MSE. Thus a feature with higher level of importance score is deemed 
to have a higher level of contribution in predicting the response variable27. Computed feature importance score 
from RF are provided in Fig. 6.

Unlike the selection of fewer distributed lags in RT and DLM, implementation of RF identifies more lagged fea-
tures in Fig. 6 for prediction of response variables. It seems that the importance scores are tailing off slowly in Fig. 6 
and we are to consider many features as predictors. Distributed lags of {2, 9, 4, 3, 16, 10, 11, 18, 17, 20, 1, 5, 7, 6, 19, 8} 
and {2, 10, 9, 4, 16, 18, 12, 5, 3, 17, 1, 11, 6} are found to be important for the prediction of △HOSP and △ICU  in 
UK, respectively. Though lag distribution of {2, 3, 17, 10, 4, 20, 14, 13, 7, 18, 19, 1, 16, 11, 6, 9, 5, 12} is deemed to 
be important for △HOSP , a lag distribution consisting all 20 lags under study are preferred for the prediction 
of △ICU  in USA.

Distributed lags in support vector regression.  Effect of lag distributions (subsets of lagged features) 
in SVR can be evaluated by using the recursive feature elimination (RFE) procedure25,28. The RFE eliminates 
features recursively from the full model and selects a subset of the most important features. At each stage of the 
search, the least important features are eliminated prior to rebuilding the model with the remaining features. 
Models are evaluated at each iteration until the best subset of feature is selected by using an appropriate objective 
function29. The best subset is the one that produces the least root mean squared error (RMSE).

Figure 7 shows RMSE computed as an average across 500 replications (runs) of SVR model. A subset of 8 
lagged features with distributed lags {2, 3, 4, 9, 10, 11, 17, 18} is found to provide the least RMSE whilst predict-
ing △HOSP in UK. For each of the remaining responses △ICU  in UK, and △HOSP and △ICU  in USA, the least 
RMSFE is achieved when all 20 lagged features are considered.
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are selected for (a), and {1, 2, . . . , 20} are required for figures in (b)–(d).
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Distributed lags in deep neural networks.  By construction, neural network (NN) assigns lower weights 
to features having lower discriminating power (lower contribution in prediction) during the generation of non-
linear combinations of features for prediction. Within a search space of 20 lagged features, neural networks are 
likely to have enough information to learn the features without making many (or any) of these features redun-
dant. More importantly, number of units and hidden layers play important roles in assigning weights to features. 
For instance, we consider a single hidden layer with different number of units in NN to explore the importance 
of these lagged features25,30. Results shown in Fig. 8 demonstrate the effects of number units in a single hidden 
layer. As the number of units in a hidden layer changes, the importance scores of features also change. As the 
number of hidden layers increases, effects of layers and number of units in hidden layers become more stringent, 
because a feature from one layer is passed to the next layer. Thus we may consider all 20 lagged features with 
distributed lags k ∈ {1, 2, . . . , 20} of △VACt−k for the prediction of △HOSPt and △ICUt , where t = 1, 2, . . . , n.

Forecasting future changes in hospitalization and ICU admission rates
It is well recognized that inflexible learning methods such as regression models (DLMs) are preferable for sta-
tistical inferences to examine the significance of dynamic marginal effects and flexible learning methods such 
as RT, RF, SVR, and DNN are preferable for prediction of respiratory tract infection (RTI) and COVID-19 time 
series5,6,31,32. DLM based inferences have explored that not all lagged features derived from △VAC affect the 
△HOSP and △ICU significantly. Thus we have explored the distributed lags for machine learning models in the 
previous sections. These distributed lagged features have been used in machine learning to obtain forecasts for 
daily changes in hospitalization and ICU admission rates.

We train machine learning models with the training data, select the best model, and apply the selected 
model to evaluate the forecasting performance based on the out-of-sample data. Forecasts are compared with 
the corresponding original values and mean squared forecast error (MSFE) is computed for each of the models 
by using the formula
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Figure 8.   Average feature importance scores computed from 500 replications of NN model with single hidden 
layer to predict �HOSPt and �ICUt by using �VACt−k in USA and UK, where k = 1, . . . , 20 . Lines show 
average scores of lagged features for different number of units ( 2, 4, . . . , 20 ) in hidden layers.
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where h is the number of out-of-sample forecast, n is current time point, and ŷi is the forecast corresponding 
to the original value yi for h future (out-of-sample) time points i = n+ 1, . . . , n+ h . We prefer a model that 
provides the least MSFE in forecasting33,34.

We optimize models under different parameter settings and provide the evaluation results only based on 
the best tuned models. For example, we have evaluated DNN by computing MSE for different combinations of 
number of hidden layers, batch sizes, and node sizes of hidden layers. We adopt similar selection procedures for 
SVR by searching parameters over a grid. Since the variations and dynamic patterns of △HOSP and △ICU time 
series for UK and USA are different, different models are found to tune-up for different series. Machine learning 
models also incorporate randomness by design. For example, randomness in neural networks can be incorpo-
rated due to the randomness in initialization of weights, regularization, embedding of layers, and stochastic 
optimization. Similarly, randomness in RF is occurred because of the random partition of data to create forest 
of regression trees. Because of such randomness, different runs of the same model on the same data produce 
different predictions. Thus the performance measure MSFE from a single run is not suitable for comparison 
across a set of models. So, we repeat the execution 500 times, obtain predictions and compute MSFE from each 
execution, and compute the average MSFE across 500 runs (repeated executions) to compare the predictive 
performance of different machine learning models. Average MSFE values computed from RT, RF, SVR, and 
DNN are provided in Table 3.

Computed relative mean squared forecast error (ReMSE) shown in Table 3 demonstrate that the DLIML 
provides qualitatively similar (value close to 1.00) or better outcome (value less than 1.00) when compared 
with the full model. Though the DLIML has selected a fewer number (or at most equal number of features) of 
lagged features compared to the full model, it does not compromise the forecasting performance. For the pre-
diction of daily changes in hospitalization ( △HOSP ) and ICU admission ( △ICU  ) rates in USA, DNN and SVR 
models provide the least MSFE when both the DLIML and full models are evaluated. In both of these cases, 
DLIML demonstrates significant contribution for all lagged features under study and provides MSFE equal to 
that obtained from the full model. On the other hand, when DLIML is implemented to UK data, SVR is found 
as the best model for △HOSP with almost 42% reduction in MSFE compared to the full model. Similarly, RF is 
found to better forecast △ICU in UK where the application of DLIML results in almost 10% reduction in MSFE.

Conclusion
Vaccination is found to reduce the hospitalization and ICU admission rates for COVID-19 patients. However, 
this effect is not observed instantly as vaccines require sufficient time to prompt the immune system. So, there 
exists a time-lagged relationship of hospitalization and ICU admission rates with vaccination rates. Application 
of DLM has explored the short-run dynamic effects of distributed lags of vaccination rates on the hospitaliza-
tion and ICU admission rates. Fitted DLM reveals the long-run cumulative effect of vaccination rates with an 
indication that hospitalization and ICU admission rates are expected to vary around zero in long-run. This is an 
indication that the COVID-19 pandemic may not dissipate shortly and hospitalization rates may not dissipate 
in long-run. Inspired by the distributed lags in DLM, we have examined distributed lags in machine learning 
models and have applied DLIML to obtain a week ahead forecast. We have demonstrated with RT, RF, SVR and 
DNN models that the DLIML provides relatively better forecasting outcome even with only a subset of lagged 
features. A healthcare administrator therefore can utilize the DLIML for forecasting and use these forecasts to 
learn about future hospitalization and ICU admission rates to prepare a service plan.

Data availability
 The datasets generated and analyzed during the current study are openly available in the Our World in Data 
repository, https://​ourwo​rldin​data.​org/​covid-​vacci​natio​ns.
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Table 3.   MSFE from out-of-sample prediction. Here, DLIML is the distributed lag inspired model and ReMSE 
is the ratio of MSFE from DLIML and Full models.

Response Model

UK USA

DLIM Full ReMSE DLIM Full ReMSE

△HOSP

RT 0.3741 0.3783 0.9889 0.5414 0.6523 0.8300

RF 0.3118 0.3208 0.9719 0.4626 0.4617 1.0019

SVR 0.2284 0.3954 0.5776 0.5588 0.5588 1.0000

DNN 0.5050 0.5050 1.0000 0.0277 0.0277 1.0000

△ICU

RT 0.0217 0.0229 0.9476 0.0571 0.0683 0.8360

RF 0.0118 0.0130 0.9077 0.0258 0.0263 0.9810

SVR 0.0211 0.0211 1.0000 0.0152 0.0152 1.0000

DNN 0.0188 0.0188 1.0000 0.0277 0.0277 1.0000

https://ourworldindata.org/covid-vaccinations
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