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An in silico comparative 
transcriptome analysis identifying 
hub lncRNAs and mRNAs in brain 
metastatic small cell lung cancer 
(SCLC)
Arsham Mikaeili Namini1,8, Motahareh Jahangir2,8, Maryam Mohseni3, Ali Asghar Kolahi4, 
Hossein Hassanian‑Moghaddam4, Zeinab Mazloumi5, Marzieh Motallebi6, 
Mojgan Sheikhpour7 & Abolfazl Movafagh6*

Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours 
lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially 
essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis 
of lung cancer patients’ differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are 
analysed through KEGG and GO databases for the most critical biological processes and pathways 
for enriched DEGs. Additionally, we performed protein–protein interaction (PPI), GeneMANIA, and 
Kaplan–Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for 
LC patients with brain metastasis and underlying molecular mechanisms. The expression data was 
gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct 
genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All 
our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub 
genes (CAT​ and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, 
LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain 
metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in 
tumour cells.

Lung cancer (LC) accounts for the most cancer-related death globally. In 2020, nearly 2.21 million patients were 
diagnosed with lung cancer, and 1.80 million deaths were estimated to be related to lung cancer (https://​gco.​
iarc.​fr)1. The Brain is the most distant metastasis in small-cell lung cancer (SCLC) patients, and brain metastasis 
(BM) increases to 50% for patients who survive after two years of initial diagnosis2; therefore, the overall survival 
of 5 years is 1–5%3. An early lung cancer diagnosis is crucial since surgery is ineffective in the late stages, espe-
cially in patients with metastasis. SCLC is an aggressive type of LC with the early development of widespread 
metastases; this leads to SCLC with a tremendously low prognosis for patients with the disease4. SCLC is highly 
relevant to smoking, with only 2% of patients diagnosed with this subtype never smoking in their lifetime5. Rb1 
and Trp53 are the most genetic inactivation forces for SCLC; however, the most efficient genomic alterations 
remain unclear at6,7. Brain metastases occur in approximately 20% of all cancer patients, with most cases in people 
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with lung, breast, and colorectal malignancies, melanoma, or renal cell carcinoma8–11. Brain metastases (BMs) 
were found in more than 25% of SCLC patients, with an average survival of 9 months following total therapy.

However, as imaging methods and systemic medicines advance, the increased incidence of BMs increases 
year after year as patients live longer. In individuals with advanced cancer, the presence of BMs continues to 
significantly contribute to overall cancer mortality12. Although more initial disease stage shift is a great result, 
changing the early stages of the disease is a significant result; the leading indicator of the effectiveness of screen-
ing is the reduction of mortality13. It is now clear that most parts of the human genome are non-coding. Long 
non-coding RNA (lncRNA) is the common term for transcriptomes with 200 or more nucleotides. About a 
decade ago, investigators figured out that lncRNAs play an essential role in cancer biology14–17. Dysregulation of 
lncRNA is the most critical evidence in different cancer types.

For instance, lncRNA HOXB-AS3 can exacerbate lung cancer migration, proliferation, and invasion. The 
mechanisms underlying these changes are by activating the PI3K‐AKT pathway. The PI3K/Akt/mTOR pathway 
impacts tumorigenesis and cancer progression18–20. This breakthrough helps us to propose a potential biomarker 
for cancer predictivity. This study aimed to detect genes (mRNAs and lncRNAs) differentially expressed between 
SCLC patients with brain metastasis and SCLC patients without brain metastasis. We also performed an enrich-
ment analysis to find correlations between specific mRNAs and lncRNAs of our two cancer patient groups. 
However, considering a gene as a biomarker requires deep, long, precise, and comprehensive studies.

Methods
Data predation and analysis.  Data for lncRNA and mRNA microchip array extracted from peripheral 
blood mononuclear cells of SCLC patients were downloaded through Gene Expression Omnibus (GEO)21. The 
data was designed as brain metastasis (BM) patients compared to non-BM patients for lncRNAs in relation to 
BM in LC samples2 (Accession: GSE161968, Platform: GPL20115).

All six replicates of the samples were used for multiple analyses. Statistical analyses were performed in R 
(v3.5.1). All the scripts and algorithms were uploaded to the GitHub webserver.

After constructing a tidy data set of gene expression matrix with samples and probes IDs, we analysed the 
mean expression and probable correlations through boxplot and heatmap to ensure denormalisation and prevent 
any false correlation. Afterwards, by scaling the expression matrix on the mean expression of each gene, dif-
ferentially expressed genes (DEGs) among samples arise in a MA plot. Moreover, principle component analysis 
was performed on our data sets’ samples. Clusters were trimmed by ignoring six samples from both BM and 
non-BM groups. Subsequently, we manipulate the K-mean algorithm for re-clustering our data set for a strong 
validation. Limma package (v3.52.2) was used to calculate the log2foldchange (LogFC) parameter threshold to 
benefit the highest number of expression data well22. Hence LogFC ≥ 1.75 and LogFC ≤ -1.75 were applied to 
our DEG results as up and down-regulated genes, respectively. Genes with a P-value of ≤ 0.05 were considered 
significant. We consider 1.75 for log2foldchange as our cutoff value because a number outside this range would 
give us an inappropriate number of candidates. Alternatively, genes with higher expression in BM than non-BM 
samples were categorised as up-regulated and down-regulated. A workflow of our approaches in this study is 
provided (Fig. 1).

Enrichment analysis.  Understanding the underlying biological roles of various genes or proteins is best 
accomplished through Gene-Set Enrichment. Through enrichment analysis, the interpretability of biological 
insights is enhanced, and the complexity of molecular data is reduced23. The basic idea of Gene Set Enrichment 
Analysis (GESA) is to explore groups of genes considerably over-represented in a given list of genes compared 
to a control set of genes. These gene sets are often, but not always, made up of genes that collaborate in a recog-
nised biological pathway24. Enrichr (https://​maaya​nlab.​cloud/​Enric​hr/), a comprehensive resource for curated 
gene sets and a search engine provided by Maayan Megalab25, was applied, with results extracted from various 
databases for enrichment analysis. After exporting the results of our gene dataset, the P-value was set to ≤ 0.05.

CBioPortal (https://​www.​cbiop​ortal.​org/) is a database that provides visualisation, analysis, and large-scale 
cancer genomics data sets26. It is a tool for the interactive examination of multidimensional cancer genomics 
data sets, which was first created at Memorial Sloan Kettering Cancer Center27. This database was used to find 
mutations in the candidate genes; then, all small cell lung cancer datasets were selected, including Small Cell 
Lung Cancer CLCGP (Nat Genet 2012), Johns Hopkins (Nat Genet 2012), U Cologne (Nature 2015), and Multi-
Institute (Cancer Cell 2017). Abundance and types of mutations for these genes were found.

Gene and protein network analysis.  GeneMANIA (http://​genem​ania.​org/) plugin in Cytoscape (https://​
cytos​cape.​org/) version 3.9.1 was applied to show the relations between candidate up and down-regulated genes. 
GeneMANIA is a user-friendly online service that allows the generation of gene function hypotheses, analysis of 
gene lists, and prioritise genes for functional experiments. GeneMANIA will automatically weight data sources 
based on their predictive value for rebuilding the query list, provided that the list is big enough (currently five or 
more genes). For instance, GeneMANIA will heavily weigh protein domain similarity networks and recommend 
more genes with a similar domain structure when provided with query genes with comparable protein domain 
structures. GeneMANIA frequently discovers new members of a protein complex based on query genes that are 
a part of that complex and gives high weight to actual or anticipated physical interactions28. Cytoscape is a free, 
open-source software project that combines biomolecular interaction networks, high-throughput expression 
data, and other molecular states into a cohesive conceptual framework.

Protein–protein interactions (PPI) also were performed from the String protein database plugin (https://​
string-​db.​org/) using Cytoscape to indicate networks of proteins of these genes. The STRING database attempts 
to combine all known and expected protein–protein interactions, including physical and functional ones29. For 
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the past 19 years, the STRING database has been in steady expansion, and the current edition includes protein 
interaction data for approximately 2000 species; nonetheless, all interactions are strictly intra-species. For the 
first time, we incorporate cross-species interactions in the STRING database in this study. STRING reported that 

Figure 1.   Article section workflow. Workflow represents a comprehensive review summarising this study’s data 
gathering, trimming, and analysing approaches. CAT​ (catalase), for instance, is one down-regulated hub gene 
that shows significant roles in critical pathways.
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PPIs are functional connections between proteins. These connections are not restricted to physical interactions; 
they may involve interactions like transcription factor binding or represent that the linked proteins are found 
in the same biological pathway30.

Panther (Protein Analysis Through Evolutionary Relationships) (http://​www.​panth​erdb.​org/) classification 
systems were applied to classify our candidate protein-coding genes. PANTHER is a comprehensive knowledge 
base of evolutionary and functional relationships between protein-coding genes (often referred to as proteins) 
and tools for utilising the classifications to analyse large-scale genomics data. Evolutionary groupings (Protein 
Class, Protein Family, Subfamily) and functional groupings are the main categories used to classify proteins (Gene 
Ontology and pathways)31. The type of protein classes and their percentage were obtained.

Survival analysis.  We employed the Kaplan–Meier plotter database (https://​kmplot.​com/​analy​sis/) to per-
form a survival analysis of the hub genes. It is a web-based tool that allows for pooled survival analysis by com-
bining different datasets from the cancer Biomedical Informatics Grid (caBIG), GEO, and TCGA repositories32. 
Up to April 24th, 2022, this database presented the overall survival analysis data of 1925 lung cancer patients. 
We input our hub genes separately and consider a p-value threshold of 0.05 for a meaningful result. Although 
KM-Plotter has many filters for focusing the study on specific criteria like stage, gender, age, surgery success, 
histology, chemotherapy, and radiotherapy, we performed the analysis on default restrictions, making our results 
more comprehensive and general.

Results
After DEGs evaluation, we need to understand molecular mechanisms that would be affected by these genomic 
dysregulations and how the disturbances impact them. DEGs in SCLC BM and non-BM patients are related 
to transcription factors, non-coding RNAs, mutations, and signaling pathways. To understand the expression 
patterns in our gene dataset, we candidate 30 up-regulated and 31 down-regulated genes, including mRNAs 
and lncRNAs, in BM and non-BM patients (Table 1). The relations and overlap of our candidate genes with 
transcription factors, miRNAs, histone modifications, signalling pathways, cell types and tissues, and Top 10 
correlated diseases acquired from specific databases for each group. (See Tables S2, S3, S4, S7, S8, and S9). In 
addition, BM shows different protein classes for up-regulated (16 protein-coding genes) and down-regulated 
(14 protein-coding genes) in BM, as shown in Fig. 6. Each gene with its class protein is demonstrated In Tables 
S5 and S6 for up and down genes.

Non‑coding RNAs might be directly related to brain metastasis in SCLC.  Enrichment analy-
sis displayed that our candidate genes are involved in essential cell signalling pathways. Some of these genes 
are important enough that we bring them up in the discussion section, such as IL5RA, EGR3, and ALOX15 
as up-expressed genes, and OCLN, MAOB, CTSB, and MPO as down-expressed genes in BM SCLC. In the 
category of up-regulated genes, we find LOC100507481 and XLOC_l2_000941 as lncRNAs; WHAMMP2, as a 
pseudogene encodes 5246 nucleotide transcript length; ADGRE4P, also a pseudogene encodes 2732 nucleotide 
transcript length; TTC39B is a protein-coding but encodes non-coding RNA with 7023 nucleotide transcript 
length; ZNF827 another protein-coding that encodes 3675 nucleotide transcript and HSD17B3 protein-coding 
genes that encode a 3559 nucleotide transcript length. For down-regulated genes, we find XLOC_l2_007062 
and LOC729870 as a lncRNA; ZIM2 is a protein-coding gene that encodes four non-coding RNA with approxi-
mately 2300 nucleotide transcripts length; Similar to this, ABCA13 also is a protein-coding gene that encodes 
five non-coding RNA with approximately 15,000 nucleotide transcripts length; ZNF608 encodes non-coding 
RNA about 6000 nucleotides, ANXA3 encodes 1056 nucleotide transcripts and RIOK3 about 3500 nucleotides, 
also are protein-coding genes. Our ultimate goal is to demonstrate the lncRNAs related to BM in SCLC patients. 
To assess our targeted lncRNAs, we utilised lncHUB, Gene Ontology (GO), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis and trimmed our dataset based on P-Value (p < 0.05)33–35. 
Since our microarray data was performed on lncRNAs and mRNAs, we utilised multiple databases to discover 
the correlated lncRNA and mRNAs to conduct a comprehensive study on pathways and biosystems with rela-
tively close lung cancer brain metastasis.

Investigation of gene ontology and pathways.  In order to investigate candidate genes’ functions in 
the cell, it is essential to show their signalling pathways to find their role in cancer; The KEGG database is required 
to achieve this aim. KEGG (2021) pathway enrichment analysis showed three significant genes; ALOX15, PIGC, 
and PIGW, which correlated in Ferroptosis and Linoleic acid metabolism pathways and Glycosylphosphati-
dylinositol (GPI)-anchor biosynthesis. (Table S1 shows the result of the KEGG analysis). Gene ontology (GO) 
enrichment analysis is commonly used to assign functions to gene sets and obtain insights into the biological 
processes in which they are engaged31. GO is a collection of gene function-controlled vocabularies arranged into 
three ontologies: biological process, cellular component, and molecular function. Due to community initiatives, 
many genomes have been annotated with GO keywords, allowing GO enrichment analysis on multiple gene sets. 
An enrichment study, for example, identifies GO keywords that are over-represented for a specific collection of 
human genes, allowing for biological interpretation.

On the other hand, KEGG pathway mapping provides more information about how genes or gene products 
interact in pathways, although the coverage of genes is less extensive than GO. GO (2021) enrich analysis was 
performed on our candidate genes from DEGs results. The top five GO terms with desirable P-Value and Com-
bined Scores are listed in Table S1. Moreover, among all GO databases results on our DEGs, the top 10 molecular 
function and biological process terms of both up and down-regulated genes are due to the rich factor of each 
term shown in Fig. 2. We utilise ggplot2 (v3.3.6) to visualise critical biological processes36.

http://www.pantherdb.org/
https://kmplot.com/analysis/
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Pathway and cell type and tissue analysis.  Pathways influenced by these candidate genes are briefly 
explained in Tables S2 and S3; SLC14A1, SLC2A5, MAOB, CRAT​, ANXA3 down genes; PIGC, PIGW, LPAR3, 
IL5RA, HSD17B3, EGR3 up genes, involved in different essential pathways. Our study focuses on brain metas-
tasis; hence in table S4, Key cell types and tissues related to up and down-regulated genes in brain metastasis 
patients demonstrated, as TMEM176B, ALOX15, TMEM176A up and SLC14A1, OSBP2 XK, KRT1 down genes 
are significant. At last, for comprehensive analysis, some other diseases related to brain metastasis SCLC genes 
and SCLC without brain metastasis genes are presented in Table S9 that LPAR3, TTC39B, TMEM176B, IL5RA 
up expressed genes and ZNF608, DACH2, ZIM2 down expressed, are related.

PIGW, a critical lncRNA.  After analysing our candidate’s genes, we monitor IGIP; PCDHGA9, TMEM176B; 
TMEM176A are up expressed and OCLN; CRB1; PNMA2, ITLN1, and ANXA3 are down-expressed genes 
(shown in Table 1) has correlations with noticeable lncRNAs. For example, PIGW observed concerning multiple 
pathways in previous analysis has a co-expression relation with LINC01386 and might have a critical molecular 
mechanism in brain metastasis in lung cancer. To survey key lncRNAs related to candidate genes, we utilised 
an enrichment analysis tool, which has presumed a constant p-value affiliated with input genes and its datasets. 
lncRNA co-expression analysis performed on the lncHUB database for both up and down-regulated genes, 
and the p-values equal 0.00983 for up-regulated genes and 0.010472 for down-regulated genes, respectively 
(Table 2)37.

Gene network and PPI analysis.  Gene network analysis co-expression and co-localisation between up 
and down-regulated genes were performed and provided in Fig. 3.

We used the STRING plugin in Cytoscape (version:3.9.1) for protein–protein interactions to construct a 
network between up and down-regulated genes according to our DEGs results38,39. For complete results, we 
filter our DEGs to |log2FC|> 1. Hence, the resulting graph showed us 169 nodes and 300 edges. Additionally, 
the node’s colour is illustrated by log2fold change. Utilising the CentiScaPe plugin, every node’s degree greater 

Table 1.   Candidate genes with different expressions in brain metastasis patients with SCLC. p-value ≤ 0.05.

Up-regulate genes logFC P-value Down-regulate genes logFC P-value

PRSS33 3.383007303 0.004560695 OCLN − 3.566468452 0.022160353

WHAMMP2 2.99733975 0.005815325 XLOC_l2_007062 − 3.329664096 0.013558958

XLOC_l2_000941 2.687330175 4.1957237415278E-05 ZIM2 − 2.854825242 0.028619212

MYOM2 2.601569126 0.021263756 PNMA2 − 2.660709775 0.01010599

C1orf87 2.59361413 1.62961553882741E-05 MPO − 2.603630721 0.034713463

PIGC 2.568682566 0.04592453 ANKRD34B − 2.435841569 0.049785848

C1orf105 2.537416642 0.004661527 ABCA13 − 2.425532635 0.010254371

ALOX15 2.372469038 0.006367303 LOC646627 − 2.409993098 0.037554779

IGIP 2.276075691 0.000645279 SLC14A1 − 2.380643274 0.001828896

SPAG6 2.242164253 0.025026256 ITLN1 − 2.341855873 0.003294184

LPAR3 2.233936235 0.019032771 CRB1 − 2.310587746 0.014682181

ZNF416 2.102556319 0.000160004 PGK2.00 − 2.111562308 0.019712849

EMR4P 2.088110399 0.006628096 KRT1 − 2.043848253 0.023066534

TRIP13 2.06727697 0.000330399 SLC2A5 − 1.999212172 0.031409788

IL5RA 2.061453481 0.006381159 PGLYRP1 − 1.943771474 0.032295719

TM4SF19 2.012294101 0.005361822 FAM83A − 1.926935845 0.002982599

PCDHGA9 2.009416266 0.00140228 XK − 1.915279305 0.008257932

PIGW 1.995038208 0.038464331 DPCD − 1.83374777 0.040212628

ZNF599 1.985801014 0.001438597 AMFR − 1.828192394 0.000293755

LGSN 1.972203834 0.006590149 TMEM158 − 1.802895011 0.001143757

TMEM176B 1.953156305 0.023746468 DACH2 − 1.800987665 0.00095326

TMEM176A 1.935063753 0.030140607 OSBP2 − 1.790583828 0.044198947

TTC39B 1.907722674 0.014295311 CRAT​ − 1.788273793 0.012034785

SIGLEC8 1.861465376 0.004428622 ZNF608 − 1.78743558 0.002590702

PRAMEF20 1.856405961 0.02697871 CYBRD1 − 1.776635568 0.001412057

CLC 1.853046847 0.010293129 CTSB − 1.776261192 0.012873076

EGR3 1.843233413 0.003359614 ANXA3 − 1.767371637 0.010699241

LOC100507481 1.77545701 0.001358476 RIOK3 − 1.762783691 0.006681225

ZNF827 1.764674234 0.01536046 MAOB − 1.758125128 0.00024905

HSD17B3 1.757453949 0.0062133 LOC729870 − 1.757276671 0.035413402

IFT52 − 1.752051545 0.014110306
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than 15 is considered hub genes, two genes (CAT​:24 and APP:16)40 (Fig. 4). We managed to study our hub geans 
survival analysis (Fig. 5).

We discovered that 20% of BM patients have mutations in 28 up-regulated genes in 47 individuals in 249 
samples. Figure S1 depicts this. MYOM2 contains the most modifications (6%). This gene has mutations in I-set: 
Immunoglobulin I-set domains and Ig_2: Immunoglobulin domain.

In 77 cases, 32% of those queried had mutations in 27 down-regulated genes. Further analysis showed MPO 
had the most significant mutations (2.5%) in SCLC patient samples indicated in Figure S2.

CAT​ and ACC​ are significant genes in lung cancer patients’ survival.  As we mentioned before, 
CAT​ and ACC​ are considered hub genes. Initial KP-Plotter analysis showed that the results were meaningful 
due to top values. The overall survival plots are provided in Fig.  5. CAT​ and ACC​’s hazard ratio (HR) were 
0.6 and 0.81, respectively. HR < 1 means that the up-regulation of genes drives high survival probability in LC 
patients. Our hub genes have a negative log2fold change in brain metastasis SCLC patients making these two 
potential biomarker genes. Fortunately, there is a meaningful relationship between DEGs and KP-Plots, validat-
ing our prediction. The hub genes CAT​ (HR = 0.6, P-value = 2.6e − 15, log2FC = − 1.3802) and APP (HR = 0.81, 
P-value = 0.0012, log2FC = − 1.1716) were significantly associated with an unfavorable overall survival in lung 
cancer patients.

Figure 2.   Gene ontology (GO) enrichment analysis. (A) Top 10 most significant changes in the GO biological 
process for up-regulated genes. (B) Top 10 most significant changes in the GO biological process for down-
regulated genes. (C) Top 5 most significant changes in the GO molecular functions for up-regulated genes. (D) 
Top 10 most significant changes in the GO molecular functions for down-regulated genes.
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Our candidate proteins’ coding genes are involved in constructing metabolic interconversion enzymes, trans-
membrane signal receptors, cell-adhesion molecules, protein-modifying enzymes and gene-specific transcrip-
tional regulators, as shown in Fig. 6. Knowing the class of proteins can help us to explore the differences between 
BM and non-BM lung cancer patients.

Discussion
Many lncRNAs showed in epigenetic changes like gene imprinting, modifications, and regulations. Beyond 
lncRNA, there is yet another type of non-coding RNA with much less information associated with cancer biol-
ogy. Small-non-coding RNA (snoRNA) has 60 to 300 nucleotides. Recent studies have shown the migration and 
progression of lung cancer tumours mainly through EMT and MMPs regulated by lncRNAs. Additionally, the 
immune system has cytotoxic CD8 + T cells to restrict tumour cell growth in cancers. Furthermore, overexpres-
sion of tumour-promoting lncRNAs can manage immune evasion of LC cells41. However, this paper will focus 
on cancer-related lncRNAs and mRNAs.

XLOC_l2_000941 third up-regulated lncRNA gene in DEGs results, with log FC = 2.68 (Table 1), is related 
to MYC transcription factor (TF) based on Peng-ran Sun et al. studies42. MYC, also known as c-myc, is a mul-
tifunctional TF that plays a vital role in cell cycle progression, apoptosis, and cellular transformation43. c-myc 
expression is also up-regulated in ovarian endometriotic cyst stromal cells, and its expression can be suppressed 
by miR-196b44. The expression of c-MYC–regulated genes are associated with a higher risk for brain metastasis 
in breast cancer patients45. This paper demonstrates the different expressions of XLOC_l2_000941 in BM SCLC 
individuals.

MYOM2, a fourth high expression gene with Log FC = 2.60 in BM patients with the highest rate of missense 
mutations, is a protein-coding gene that usually plays a role in synthesising titin-associated protein fibronectin 
type III and immunoglobulin C2 domains46. Fibronectin is a cell adhesion protein that could affect metastasis47. 
MYOM2 may associate with the pharmacology of Tumor necrosis factor (TNF) blockers48, a multifunctional 
cytokine that plays critical roles in diverse cellular events such as cell survival, proliferation, differentiation, and 
death alter cancer metastasis49. As we show in Table 2, MYOM2 is associated with LINC01511 and LINC00448 
lncRNAs. LINC01511 is up-regulated in triple-negative breast cancer and might play a fundamental role in the 
mechanism of EGFR exon 19 deletions in lung adenocarcinoma50.

WHAMMP2 (WAS protein homolog associated with actin, Golgi membranes, and microtubules pseudogene 
2) is a pseudogene highly expressed in BM SCLC similar to Thymocytes in Thymus in brain metastasis patients 
mentioned in table S4.

TMEM176B and TMEM176A have an extensive correlation with different lncRNAs, as shown in Table 2. 
Some of these lncRNAs get involved in cancers; for instance, LINC00501 prohibits lung cancer development 

Table 2.   Key LncRNAs related to up and down-regulated genes in brain metastasis patients (lncHUB lncRNA 
Co-Expression database).

LncRNA Up-regulated genes LncRNA Up-regulated genes LncRNA Down-regulated genes

BDNF-AS IGIP; PCDHGA9 LINC02712 SIGLEC8; PCDHGA9 FGF10-AS1 AMFR; CYBRD1

RASSF8-AS1 IGIP; PCDHGA9 LINC00501 TMEM176B; TMEM176A LINC02115 AMFR; CYBRD1

TMEM161B-AS1 IGIP; PCDHGA9 LACTB2-AS1 TMEM176B; TMEM176A LINC01716 AMFR; ZIM2

NNT-AS1 IGIP; PCDHGA9 C1RL-AS1 TMEM176B; TMEM176A MYO16-AS1 ANXA3; FAM83A

SEPTIN7-AS1 IGIP; PCDHGA9 LINC02068 TMEM176B; TMEM176A LINC00424 ANXA3; ITLN1

PSMG3-AS1 IGIP; PCDHGA9 LINC01853 TMEM176B; TMEM176A LINC00560 ANXA3; ITLN1

BACE1-AS IGIP; PCDHGA9 LINC01504 TMEM176B; TMEM176A CTNNA2-AS1 CRB1; PNMA2

GRID1-AS1 IGIP; PCDHGA9 FBXO3-DT TMEM176B; TMEM176A LINC01114 CRB1; PNMA2

LINC00909 IGIP; PCDHGA9 LINC01843 TMEM176B; TMEM176A LINC02520 CRB1; ZIM2

LINC01511 LGSN; MYOM2 LINC02384 TMEM176B; TMEM176A LINC01701 FAM83A; CTSB

LINC02864 LGSN; TRIP13 OVOL1-AS1 TMEM176B; TMEM176A LINC01288 MAOB; ZIM2

LPP-AS2 LPAR3; ZNF599 SMIM2-AS1 TMEM176B; TMEM176A ARHGEF2-AS1 OCLN; ANXA3

TMCO1-AS1 PIGC; ZNF599 LBX2-AS1 TMEM176B; TMEM176A NKX2-1-AS1 OCLN; CTSB

LINC00448 PRAMEF20; MYOM2 CPNE8-AS1 TMEM176B; TMEM176A LINC01806 OCLN; CTSB

LINC01736 SIGLEC8; PCDHGA9 ERVK9-11 TMEM176B; TMEM176A SCN1A-AS1 PNMA2; ABCA13

LINC02015 TMEM176B; TMEM176A LINC02712 SIGLEC8; PCDHGA9 SAP30-DT PNMA2; SLC2A5

LINC01880 TMEM176B; TMEM176A LINC01999 TMEM176B; TMEM176A HHLA3-AS1 XK; ITLN1

LINC02244 TMEM176B; TMEM176A LINC02538 TMEM176B; TMEM176A LINC02703 ZNF608; SLC2A5

LINC02011 TMEM176B; TMEM176A HNF1A-AS1 TMEM176B; TMEM176A

SMIM2-IT1 TMEM176B; TMEM176A LINC01386 TRIP13; PIGW

LINC01781 TMEM176B; TMEM176A SMAD9-IT1 ZNF827; IGIP

LINC01506 TMEM176B; TMEM176A EDNRB-AS1 ZNF827; PCDHGA9

LINC02532 TMEM176B; TMEM176A



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18063  | https://doi.org/10.1038/s41598-022-22252-7

www.nature.com/scientificreports/

and metastasis by mediating miR-129-5p/HMGB1 and up-regulated in non-small cell lung cancer (NSCLC) 
patients51. Contrariwise, LBX2-AS1 promotes cell proliferation and metastasis through Notch signalling in 
NSCLC52. Also, we find that these two genes have physical interactions, co-expression relations, and shared 
protein domains, demonstrated in Fig. 3B. Transmembrane proteins (TMEMs) are membrane proteins with at 
least one transmembrane structure; They are also known as integral membrane proteins. TMEM176 plays diverse 
functions in distinct malignancies. A range of membrane protein functions is intimately associated with the 
proliferation, invasion, and metastasis of malignant tumours53,54. In human hepatocellular carcinoma, epigenetic 
silencing of TMEM176A promotes ERK signalling55.

Similarly, high expression of TMEM16A plays a role in gastrointestinal stromal tumours56. TMEM176A in 
glioblastoma can inhibit Bcl2 expression and cause apoptosis57,58. Increased TMEM176B protein levels have been 

Figure 3.   Candidate genes in BM SCLC patients—gene networks from GeneMANIA. (A) Up-regulated 
genes network. Physical interactions are shown in blue lines, Co-expression genes are shown in green lines, 
Co-localization is shown in purple lines and shared protein domains are shown in the orange lines. The 
higher scores are shown as a larger circle. Intermediate genes involved were also demonstrated. (B) Down-
regulated genes network. Co-expression genes are shown in green lines, Co-localization is shown in purple 
lines, and genetic interactions are shown in orange lines. The higher scores are shown in black as a larger circle. 
Intermediate genes involved were also demonstrated.
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found in various tumours, and inhibition of TMEM176B has been shown to increase CD8 + T cell-mediated 
tumour growth control, improving cancer therapy effectiveness59. TMEM176B represses adenosine triphosphate 
(ATP) and nigericin-induced NLRP3 inflammasome activation in dendritic cells and macrophages through ionic 
mechanisms. Targeting TMEM176B can emphasise anti-tumoral CD8+ T cell responses in an inflammasome-
dependent manner while directly killing malignant cells60,61.

Phosphatidylinositol glycan anchor biosynthesis class C and W, respectively (PIGC and PIGW), are critical 
genes in the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway, encode an endoplasmic reticulum 
(ER)-associated protein that is significant for the biosynthesis of glycosylphosphatidylinositol (GPI)62. This pro-
cess happens in the endoplasmic reticulum and is a step in the glycosylphosphatidylinositol (GPI) biosynthesis, 
anchoring many cell surface proteins to the membrane. Defects in the PIGW gene cause the age-dependent 
epileptic encephalopathy West syndrome and a syndrome exhibiting hypophosphatasia and cognitive disability 
(HPMRS5)63. PIGC was up-regulated and associated with the transferase activity of cancer cells such as Hepato-
cellular carcinoma (HCC)62. Since cell adhesion can be altered in metastasis, it can indicate that in SCLC brain 
metastasis, GPI binding changes because of the high expression of PIGC and PIGW.

Figure 4.   Protein–protein interactions network with DEGs for brain metastasis in SCLC. Up and down-
regulated candidate genes are coloured on the scale of logFC. Log2FC is an indicator of the expression level of 
these genes since logFC = 3.75 for the most up-regulated gene in BM SCLC patients and logFC = − 3.75 for the 
most down-regulated gene. The nodes’ size characterises the connectivity degree for identifying the critical hub 
genes (CAT​ and APP). Unconnected nodes are trimmed from the figure.
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We indicate that ABCA13, an ATP-binding cassette (ABC) transporter, has the most mutations (9%) in lung 
cancer patients, as shown in Figure S2, Suggesting that alteration of this gene can affect the lung cancer state.

AMFR is a gene that encodes ubiquitin-protein ligase. It also correlates with lncRNAs, including FGF10-
AS1, LINC02115, and LINC01716 (Table 2). Overexpression of gp78/AMFR in human cancers is related to low 
survival and the high stage of the tumours64,65. Thus, It can attribute narrow expression of AMFR in non-BM 
SCLC despite BM SCLC to a biomarker of this type of cancer metastasis. CRAT​ encodes an acetyltransferase 
and is involved in specific pathways among Beta-oxidation of very long-chain fatty acids, Beta-oxidation of 
pristanoyl-CoA, and Peroxisomal lipid metabolism (Table S3). CRAT is required to transport acetyl-CoA from 
peroxisomes or mitochondria into the cytoplasm to activate calcium/calmodulin-dependent kinase II (CaM-
KII). A decrease in CRAT protein levels reduces cell proliferation and low cell migration; it also is necessary for 
CaMKII activation66. OCLN is the most downregulated gene in DEGs results, with Log FC = − 3.56 (Table 1); 
naturally encoded transmembrane proteins play an essential role in regulating cell permeability barriers formed 
by protein tight junctions and Are an Integral Component of the blood–brain barrier (BBB)67.

We demonstrate that low expression of this gene may affect brain metastasis since prior studies reveal 
that CeRNA regulates OCLN mRNA, which plays a vital function in the BBB. PIK3CG is a component of the 
PI3K-Akt signalling pathway, controlling essential cell functions such as cell proliferation, differentiation, and 
metabolism68,69. OCLN also relates to three lncRNAs such as ARHGEF2-AS1, NKX2-1-AS1, and LINC01806 
(Table 2). Two hub genes, including CAT​ and APP, are involved in different cancers; for Instance, CAT, positioned 
specially in peroxisomes, decomposes H2O2, a spinoff of fatty acid oxidation, to oxygen and water. Thus, CAT 
confers safety in opposition to the deadly consequences of H2O2 without producing intermediate unfastened 
radicals, and the ensuing oxygen is applied to different metabolic processes70. Catalase is likewise often down-
regulated in tumour tissues like non-small-cell lung cancer than in normal tissues of the exact origin71. H2O2 is a 
mediator of several physiological processes, including cell differentiation and proliferation, cellular metabolism, 
survival, and immune response, through ROS (reactive oxygen species) intracellular signalling (Fig. 1)72.

Amyloid precursor protein (APP) is a protein that has a role in the progression of Alzheimer’s disease. Its 
cytoplasmic region contains numerous phosphorylation sites. APP has also been suggested as a molecule involved 
in cell proliferation and invasion in various human cancers, including non-small-cell lung cancer73–75. Our study 
reveals that these genes are downregulated In brain metastasis SCLC and suggests that they can influence the 
cancer stage and survival rate, as shown in Fig. 5. We suggest these genes mentioned above can be associated with 
brain metastasis in SCLC and might be employed as new therapeutic targets and potential prognosis biomarkers. 
However, considering these genes as a Biomarker require deep and comprehensive studies yet clinical valida-
tions. Since we performed only bioinformatical analysis, deficiencies still demand clinical experiments and data 
validation. Furthermore, these candidates’ metastasis genes’ functions and mechanisms are still to be investigated.

In conclusion, brain metastasis SCLC shows a different gene expression than non-BM SCLC. We demon-
strated up and down-regulation of specific lncRNAs and mRNAs and their networks to evaluate their predictive 
values. Preventing cancer metastasis with reliable biomarkers can be vital; however, it is yet unknown to find the 
exact role of these distinct lncRNAs and how they influence cancer metastasis.

Figure 5.   Prognostic values of two hub genes in the brain metastases from SCLC patients. Kaplan–Meier 
survival analysis of 2 hub genes in patients with small-cell lung cancer. The prognostic value of (A) APP and (B) 
CAT​ for determining the prognostic value of APP and CAT​ mRNA expression were evaluated using the Kaplan–
Meier plotter. The Affymetrix IDs of the genes are as follows: 200602_at (APP) and 201432_at (CAT​). Logrank 
test for Kaplan–Meier analysis reveals the p-value for both APP and CAT​ survival analysis. APP and CAT​ were 
specifically represented among lung metastasis samples. The patients survive probability with a high expression 
of hub genes indicated as red-line, and patients survive probability with a low expression of hub genes indicated 
as black-line. The high and low-expression cohorts were divided by the median survival time.
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Data availability
The expression data was gathered from Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
(ACCESSION NUMBER: GSE161968) and enrich analysis performed utilising KEGG (https://​www.​genome.​jp/​
kegg/), GO (http://​geneo​ntolo​gy.​org/), and Kaplan–Meier survival analysis (https://​kmplot.​com/​analy​sis/) data-
bases. The analysed data and R codes are available to the corresponding author with no restriction upon request.
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