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Sparse inference and active 
learning of stochastic differential 
equations from data
Yunfei Huang 1,4, Youssef Mabrouk 2,3,4, Gerhard Gompper 1 & Benedikt Sabass 1,2*

Automatic machine learning of empirical models from experimental data has recently become possible 
as a result of increased availability of computational power and dedicated algorithms. Despite the 
successes of non-parametric inference and neural-network-based inference for empirical modelling, 
a physical interpretation of the results often remains challenging. Here, we focus on direct inference 
of governing differential equations from data, which can be formulated as a linear inverse problem. 
A Bayesian framework with a Laplacian prior distribution is employed for finding sparse solutions 
efficiently. The superior accuracy and robustness of the method is demonstrated for various cases, 
including ordinary, partial, and stochastic differential equations. Furthermore, we develop an active 
learning procedure for the automated discovery of stochastic differential equations. In this procedure, 
learning of the unknown dynamical equations is coupled to the application of perturbations to the 
measured system in a feedback loop. We show that active learning can significantly improve the 
inference of global models for systems with multiple energetic minima.

Throughout the natural sciences, mathematical models are frequently formulated as differential equations. For 
example, with stochastic, ordinary, and partial differential equations (SDEs, ODEs, and PDEs). In physics, gov-
erning differential equations are often derived from first principles, for instance, from conservation of energy 
and momentum, and thermodynamic considerations. However, for complex systems studied, e.g., in biophys-
ics, climate science, and neuroscience, first principles determining the system properties are typically not fully 
known. For example, because such systems are in a driven non-equilibrium state, highly nonlinear, and because 
dynamics may occur on multiple scales that are not well separated. In these cases, one can resort to phenomeno-
logical, effective descriptions that may result from some level of coarse graining and are based on experimental 
data. Recently, the increased availability of computational power has made it possible to construct such models 
in an automated fashion, which is known as data-driven discovery of governing equations.

Various approaches have been developed for inferring the differential equations that govern a non-linear 
dynamical system directly from measured  data1–6. In a popular approach that is called “symbolic regression”, 
function libraries are employed to automatically extract the terms in a governing equation that best represents 
the measured data according to some optimization  criterion1,2. Recently, the use of sparse regression techniques 
for symbolic regression has received considerable scientific  attention3,4. In symbolic regression, the physical 
quantity z, which is for illustration taken to be a scalar here, is assumed to obey an equation of the general form

where ž can be, e.g., a time derivative ž = ∂z
∂t  for describing an ODE. F(z, x, t, c) is an unknown function 

whose arguments x represent space coordinates while t represents time and c is a constant parameter. Vectors 
and arrays are denoted by bold letters. The aim of symbolic regression is to estimate the function F(. . .) from a 
data set z , which could be a measured sequence of values of z at different time-space coordinates. The vector ž is 
either measured or estimated from z , e.g., with a discrete difference scheme. For inference of F(· · · ) , a so-called 
“library” matrix  �(z) is constructed from a suitable set of functions of z , e.g., various powers of z , combinations 
of partial derivatives, or trigonometric functions. Assuming that the governing Eq. (1) can be expressed as a 
linear superposition of library terms, we write

(1)ž = F(z, x, t, c),
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where ξ is a weight vector. The inference of the governing equation is thus reduced to a regression problem for 
the optimal ξ , given ž and �(z) . In general, solving the inverse problem in Eq. (2) is not straight-forward since 
the matrix � should represent many equation terms and can have a large condition number κ(�).

In Ref.3, a method called sparse identification of nonlinear dynamics (SINDy) has been proposed. The method 
works iteratively. At each iteration, ξ is first obtained from a least-squares optimization involving Eq. (2) and ξ 
is subsequently thresholded such that values smaller than a cutoff κ are set to zero. The iteration is continued 
until convergence conditions are satisfied. SINDy has been shown to be a powerful and versatile method that 
is applicable for inference of various types of  ODEs3. However, the method requires the user to manually select 
the thresholds κ . For the identification of PDEs, an alternative algorithm called train sequential threshold ridge 
regression (TrainSTRidge) has been described in Ref.4. This method is a variant of a least-squares optimization 
procedure for ridge regression called Sequential Threshold Ridge regression (STRidge). In STRidge, the vector ξ 
is first calculated by using ridge regression with a fixed regularization parameter. Then, all elements in ξ that have 
a smaller absolute value than a threshold κ are set to zero. Both, the regularization parameter and the threshold 
κ need to be provided by the user in STRidge.  TrainSTRidge4 employs L0 regularization and a training step to 
automatically determine the threshold κ while the regularization parameter remains to be set by the expert user. 
Conversely, a method called threshold sparse Bayesian regression, which also was employed for identification of 
 PDEs7, requires no input of a regularization parameters but some thresholds remain to be provided by the user.

The first aim of this work is to provide a method to solve the inverse problem associated with data-driven 
discovery of governing physical equations, Eq. (2), by combining a Bayesian approach with a automatic thresh-
olding procedure. We call this method automatic threshold sparse Bayesian learning (ATSBL). Our algorithm 
does not require any manual fine-tuning of parameters to correctly infer governing differential equations from 
measured data. The method can be employed to identify ODEs, PDEs, and SDEs.

The case of SDEs requires particular attention, since the above-mentioned methods of equation inference 
are mainly designed for deterministic processes and some moderate amount of additive noise. The question of 
how to reconstruct the force fields for stochastic processes has been investigated in numerous studies, e.g., for 
application in soft matter physics and  biophysics5,8–13. Recently, sophisticated methods have been proposed for 
dealing with discretization and the inference problem in the context of SDEs for second-order  dynamics14–17. 
Here, we focus on the use of symbolic regression for the inference of analytical expressions of SDEs of the 
overdamped Langevin-type. One approach to symbolic regression in this context is based on dividing the phase 
space into small hypercubes which are also called bins in the one-dimensional case. Average values of the state 
variables and of their derivatives are estimated in each hypercube and the regression is defined with respect to 
these  averages5. This kind of averaging generally depends on the chosen discretization and the averaging may 
lead to a substantial loss of information. Furthermore, application of this method to non-stationary processes 
requires a large ensemble of trajectories and considerable numerical effort to sample the time-dependent prob-
ability distribution in phase space. The difficulties related to the averaging in phase space motivate the investiga-
tion of the question to what extent the above-mentioned inference tools can be used in the context of noisy data 
without the need to perform ad hoc averaging, and, eventually, how the robustness of the inference methods may 
be improved in this context. We show that imposing Laplacian or Gaussian prior distributions on the inferred 
models is generally sufficient to identify the correct SDEs directly from trajectories without phase-space bin-
ning and we provide a comparison of the accuracy of results obtained with the two types of prior distributions. 
A remarkable performance of the Laplacian prior is demonstrated with several examples, including Brownian 
motion in time-dependent potentials.

A major challenge for the inference of SDEs is that the phase space is often sampled very inhomogeneously 
in available data. This problem is encountered, e.g., for systems where the long-term dynamics is dominated by 
transitions between different, locally stable states, while the short-term dynamics are dominated by fluctuations 
around individual stable states. In such cases, the inferred equation may be meaningful only locally, i.e, within 
the region covered by the measurement trajectory, and it may be a priori impossible to infer the global dynamics 
from a given data set. To enable an automatic inference of a global model under these conditions, we consider 
the question of how to design an external perturbation to the system, also called “control force”, such that the 
state variables are forced to explore the full phase space in a shortened sampling time. Established Umbrella 
sampling routines used for this purpose rely on quadratic control forces and involve non-trivial design steps for 
the control  force18–21. See, e.g., Refs.22,23 for alternative approaches. This kind of methodology has proved useful, 
e.g., in the context of computational studies of  nucleation24 and  growth25 processes. We develop an alternative 
adaptive control technique that recursively infers the governing equation and adapts the external control solely 
based on inferred equations. The adaptation loop consists of inference of the governing equation and a subse-
quent update of the control force such that it is directly opposite to the inferred force. No parameters need to be 
tuned for designing the control with this adaptive scheme. Using the adaptive control scheme, we demonstrate 
a substantial improvement of the inference of SDEs for several different simulations of Brownian motion.

This work is organized as follows. The “Methods” section provides details on the the construction of function 
libaries and the casting of the inference problem into a system of linear equations. The inference algorithm is 
summarized and it is explained how Laplacian prior distributions can be used to impose the sparsity condition 
on the inferred models. In the “Results” section, the performance of the described method is illustrated by means 
of numerical examples and a comparison with previously described methods is presented. An adaptive sampling 
technique for improving the inference of SDEs is proposed and the usefulness of this approach is demonstrated.

(2)ž = �(z)ξ ,
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Methods for data-driven identification of differential equations
Ordinary and partial differential equations. Measurement data from a system of interest is presumed 
to be recorded as a time series of states, for example, a time-dependent position vector. In a data-driven approach 
to model a system, the data is used to automatically infer the a priori unknown dynamical equations that govern 
the observed process. In this work, inference is based on libraries of candidate functions for the governing equa-
tions. The data used for inference of differential equations is assumed to contain additive noise but no systematic 
errors.

For inference of ODEs, we generalize the introductory example for a scalar variable z, Eq. (1), to a system 
with M compontents that are assumed to be sampled with the same regular time interval for all ℓ ∈ {1 . . .M} 
components. To distinguish discrete measurements from continuous variables, a subscript notation is 
employed in the following. The ℓ-th component measured in an ordered time series [t1, . . . , tN ] is written as 
zℓ = [zℓ,t1 , zℓ,t2 , . . . , zℓ,tN ] . Vectors or arrays containing multiple variable measurements, e.g., at different time 
points, are denoted with bold letters. The whole data can then be written in matrix form as

Our approach also requires derivatives of the measured data. For simplicity, finite-difference approximations 
are used throughout this work. Approximate derivatives are denoted by the operator D... , which represents here 
a fourth-order finite central difference scheme. For example, a time derivative of the ℓ-th state component, zℓ , 
at the i-th timepoint ti is written as żℓ(t)|t=ti ≈ Dtzℓ|t=ti . For the entire dataset, we write the time derivative as

A governing ODE for the vector containing the trajectory of the ℓ-th state component may be written as a linear 
combination of elementary functions of all {zℓ′ } , e.g., as

where the indices ℓ′ , ℓ′′ , and ℓ′′′ cover the M system dimensions, ⊙ denotes an element-wise product, and c 
represents a constant. Fℓ can also depend on time, but we focus mostly on autonomous differential equations 
in the following. Since Fℓ(·) represents a linear combination of functions that can be calculated from the data, 
Fℓ(·) can be expressed with the help of a library matrix �(Z) multiplied with a sparse vector ξ ℓ . Thus, we obtain 
for Eq. (3) in discretized form

where the terms of the library matrix �(Z) are calculated from the measurement data by evaluating the func-
tions of {zℓ′ } and the non-zero elements of ξ ℓ characterize the dynamics of the system. Since Eq. (4) refers to 
ODEs, no derivative terms are contained in the library on the right-hand side of the equation. Given Dtzℓ and 
�(z) , the aim is to calculate a sparse vector ξ ℓ with a minimal number of non-zero coefficients corresponding 
to a minimal number of terms necessary to describe the dynamics.

For inference of PDEs, the library matrix � has to contain partial-derivative terms. Thus, data is required that 
allows the numerical estimation of derivative expressions with respect to two or more variables, for example, 
with respect to time and space. Usually, measurements therefore consist of discrete space-time series recordings 
of system variables. For example, an array ZP representing the M-dimensional state vector that is measured at N 
time points in R positions of one space coordinate x is written as

With a finite-difference approximation, vectors of time derivatives of every component, Dtzℓ , and various 
orders of x derivatives are calculated, for example, DxZ

P , DxxZ
P , . . . . These derivative terms are added to the 

Ż ≈ DtZ =
[

Dtz
T
1 , Dtz

T
2 , . . . , Dtz

T
M

]

.

(3)Dtzℓ = Fℓ({zℓ′ }, {zℓ′′ ⊙ zℓ′′′ }, . . . , {cos zℓ′ }, . . . , c),

(4)Dtzℓ = �(Z)ξ ℓ,
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library �P . Like for ODEs, inference of the dynamical equation governing the component zℓ is then based on 
the linear equation

with a sparse coefficient vector ξ ℓ to be determined.
Note that a robust estimation of derivatives from noisy data is an important prerequisite for data-driven infer-

ence of ODEs and PDEs in this framework. The fourth order finite-difference approximations employed here 
may be supplemented or replaced with other methods, including denoising procedures and Gaussian-process 
regression models.

Stochastic differential equations. We focus on Langevin-type SDEs to describe the time evolution of 
continuous, real state variables X(t) , representing, e.g., the position of a Brownian particle in  space26. Trajec-
tories, denoted by X(t) , are time-ordered sequences of values of space coordinates x . The general form of the 
considered SDEs is

where we employ the Einstein sum convention and Xℓ(t) denotes the ℓ-th component of the system state at 
time t. The trajectories X are calculated by making use of Ito’s interpretation of stochastic  integrals26. The 
gℓ(X(t), t) represent the deterministic parts of the differential equations. For example, for a Brownian parti-
cle undergoing overdamped motion in the presence of conservative forces with a potential U(x, t) , we have 
gℓ(X, t) = −∇xℓU(x, t)|x=X(t) . The stochastic perturbations are assumed to result from a Wiener process with 
a noise source Ŵℓ(t) and dWℓ = Ŵℓ(t) dt . The noise is assumed to obey a Gaussian distribution with a vanishing 
mean and a δ-correlated variance as 

 respectively. The coefficient matrix hℓ,ℓ′ in Eq. (6) scales the magnitude of the stochastic perturbations and is 
assumed to be diagonal, for simplicity. Further noise sources, e.g., resulting from an experimental measurement 
of a trajectory, are not explicitly considered throughout this work.

The Fokker–Planck equation that corresponds to Eq. (6) and describes the evolution of a probability density 
function f (x, t) is given by

where the Fokker–Planck operator L̂ acting on f (x, t) has the form

The functions D(1)
ℓ (x, t) and D(2)

ℓ,ℓ′(x, t) are called Kramers–Moyal (KM) coefficients or drift and diffusion 
coefficients. Under the assumption of perfect knowledge of the trajectories X(t) , the KM coefficients can be 
calculated from the incremental changes �Xℓ(t) ≡ Xℓ(t + τ)− Xℓ(t) in an infinitesimal time interval τ as 

 where �. . .�X(t)=x denotes averages over the stochastic trajectories. The KM coefficients are related to the func-
tions gℓ and hℓ,ℓ′ in the Langevin equation as 

We consider only diagonal diffusion matrices, but the KM coefficients can depend explicitly on space and 
time. To estimate the coefficients, M-dimensional trajectories Xℓ,i , ℓ ∈ {1, . . . ,M} are sampled with a small, regu-
lar time step s at time points i ∈ {1, . . . ,N} . Trajectory samples Xℓ,i are distinguished from the original stochastic 
variable Xℓ(t) by the index i, representing the i-th time point. Therewith, two new sequences are constructed as 

(5)Dtzℓ = �P
(
ZP ,DxZ

P ,DxxZ
P , . . .

)
ξ ℓ,

(6)
dXℓ(t) = gℓ(X(t), t)dt

︸ ︷︷ ︸

deterministic part

+ hℓ,ℓ′(X(t), t) dWℓ′ (t)
︸ ︷︷ ︸

noise

,

(7a)�Ŵℓ(t)� = 0,

(7b)�Ŵℓ(t)Ŵℓ′(t
′)� = δℓ,ℓ′δ(t − t ′),

(8)
∂f (x, t)

∂t
= L̂f (x, t),

(9)L̂f (x, t) = − ∂

∂xℓ
D
(1)
ℓ (x, t)f (x, t)+ ∂2

∂xℓ∂xℓ′
D
(2)
ℓ,ℓ′(x, t)f (x, t).

(10a)D
(1)
ℓ (x, t) = lim

τ→0

1

τ
�[�Xℓ(t)]�X(t)=x ,

(10b)D
(2)
ℓ,ℓ′(x, t) = lim

τ→0

1

2τ
�[�Xℓ(t)][�Xℓ′(t)]�X(t)=x ,

(11a)gℓ(x, t) = D
(1)
ℓ (x, t),

(11b)hℓ,ℓ′(x, t) =
√

2D
(2)
ℓ,ℓ′(x, t).
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 where s is a small time  step5. The F(1)
ℓ  and F(2)

ℓ  are constructed with sample trajectories from random processes 
that are not differentiable. Use of these quantities for estimation of the KM coefficients in the spirit of Eq. (10) 
makes it necessary to first sample the stochastic process extensively to then approximate the average �. . .�X(t)=x 
over different realizations of the process.

Note that in basing the estimation on Eq. (10), we are neglecting two problems that occur for time series 
measured in the “real world”. Firstly, measurement noise may render the assumption of a Markov process inva-
lid on small  scales27. Secondly, the finite sampling interval s cannot be made arbitrarily small in practice and 
therefore the estimated KM coefficients deviate systematically from the true  coefficients28,29. Procedures for 
correcting finite-sampling-time errors are available for various stochastic  processes30–32. While the focus of this 
work is on the inference problem for governing equations, finite sampling-time corrections should be employed 
in practical applications.

In the following, we employ two different methods for estimating the drift and diffusion coefficients. Firstly, 
a method is described in the next subsection that is based on binning of the data in phase space to produce 
histograms. Secondly, we compare the results obtained from data binning with results from direct estimation 
of the KM coefficients.

Estimation of KM coefficients from binned data. A classical method for the characterization of stationary, 
Markovian time series resulting from Langevin dynamics is based on binning of the trajectory data in space 
 intervals5,33,34. For this approach, we focus on problems with only one space dimension ( M = 1 ). To estimate 
probability distributions, the data from multiple sample trajectories of the stochastic process is grouped into Q 
bins and the values in each bin are averaged as 

 where X̄k , F̄
(2)
k  , and F̄(2)k  are bin-wise averages. The estimated probability for finding trajectory parts in the k-th 

bin, pk , is normalized as 
∑Q

k=1 pk = 1 with 0 ≤ pk ≤ 1 . Histograms resulting from data binning directly yield 
the curves for the drift and diffusion coefficients, see Refs.5,33. The equations for the KM coefficients, D(1)(x) 
and D(2)(x) , are inferred by finding analytical expressions for F̄(1,2) as functions of X̄ . For this purpose, a library 
� ∈ R

Q×K is constructed from the binned data, where Q is the number of bins and K is the number of terms in 
the library. For example, �(X̄) = [1, X̄, X̄⊙X̄, X̄ ⊙ X̄ ⊙ X̄, sin(X̄), . . . ] where ⊙ again denotes an element-
wise product. If the library contains all the function expressions that are necessary to describe the KM coefficients 
analytically, the governing equations can be written as 

 where W(1) and W(2) are two sparse vectors whose non-zero entries correspond to the library terms to be 
included in the sought-for analytical expressions for the KM coefficients. Equation (14a) yields D(1)(x) and 
Eq. (14b) yields D(2)(x) . The inverse problems of finding optimal W(1,2) in Eq. (14) have the same form as the 
problem in Eq. (2).

The binning of trajectories can produce significant errors in sparsely sampled regions, both in the interior and 
at the boundaries of the sampled phase space. We propose that the identification of SDEs can be improved by 
removal or filtering of the bins with high uncertainty. To substantiate this suggestion, we implement the inference 
procedure for unfiltered histograms and, additionally, implement a straight-forward extension that essentially 
consists of fixing a small probability threshold, below which all the data is discarded. While the probability thresh-
old can can be determined in different ways, we employ here an automatic heuristic that was originally designed 
for edge detection in  images35. The procedure that is described in Ref.35 consists of dividing the data according 
to probability thresholds to maximize the Shannon and Tsallis entropy, respectively. Maximization of the Shan-
non entropy produces thresholds that divide the data into “foreground” and “background”, corresponding to 

(12a)F
(1)
ℓ =

{

F
(1)
ℓ,i

}

i=1,...,N
=

{
Xℓ,i+1 − Xℓ,i

s

}

i=1,...,N

,

(12b)F
(2)
ℓ =

{

F
(2)
ℓ,i

}

i=1,...,N
=

{
(Xℓ,i+1 − Xℓ,i)

2

2s

}

i=1,...,N

,

(13a){Xi}i=1,...,N �→
{
X̄k

}

k=1,...,Q
= X̄,

(13b)
{

F
(1)
i

}

i=1,...,N
�→

{

F̄
(1)
k

}

k=1,...,Q
= F̄(1),

(13c)
{

F
(2)
i

}

i=1,...,N
�→

{

F̄
(2)
k

}

k=1,...,Q
= F̄(2),

(14a)F̄(1) = �(X̄)W(1),

(14b)F̄(2) = �(X̄)W(2),
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signal-dominated and noise-dominated phase-space regions, respectively. The threshold value determining the 
“background” is then improved in a second step by maximizing the Tsallis entropy, whose pseudo additivity 
reportedly improves the analysis of data containing long-range correlations, see also Ref.36. While we found that 
this method for determining a probability threshold is useful in practice, its theoretical underpinnings are to 
our knowledge not entirely clear. Thus, a manual selection of the probability threshold based on the results may 
be preferable in some cases.

Estimation of KM coefficients without data binning. A more direct approach for estimating the KM coeffi-
cients is based on the use of the trajectories F(1)ℓ  and F(2)ℓ  without binning or filtering. Since we do not intend 
to study transient initial dynamics, we mostly employ as input data a single, long trajectory generated from the 
stochastic process. For inference of the KM coefficients from the space-time trajectories, we construct a library 
� ∈ R

N×K , where N is the length of the trajectory and K is the number of terms in the library. For example, 
�({Xℓ′ }) = [1, X1, . . . ,XM , X1 ⊙ X2, . . . , sin(X1), . . .] , where ℓ′ covers all M components of the stochastic 
process. Note that the library is constructed such that F1ℓ,i and F2ℓ,i at the i-th time point depend only on functions 
involving coordinates {Xℓ′ ,i}ℓ′ at the same time point. Thus, a velocity dependence or a history dependence of 
the estimators for the drift and diffusion coefficients is excluded. Under the assumption that the library contains 
all necessary terms describing the drift and diffusion coefficients, the coefficients for the ℓ-th component of the 
stochastic process can be inferred with 

 where ℓ ∈ {1 . . .M} and the vectors W(1,2)
ℓ  are non-zero in those entries that correspond to the terms in the 

libary that are required for the analytical description of the KM coefficient. The determination of the W(1,2)
ℓ  is 

again an inverse optimization problem.

Solution of the inference problems with automatic threshold sparse Bayesian learning. For 
identification of the relevant library terms as, e.g., for Eq.  (15), we propose a method that we call automatic 
threshold sparse Bayesian learning (ATSBL). The method consists of two main steps. First, the inverse problem 
is solved with an efficient algorithm called Bayesian compressive sensing using Laplace priors (BCSL)37. Since 
the library is large, the solution vector generated by the BCSL algorithm typically still contains quite a few non-
vanishing but small entries. Therefore, in a second step, the negligible contributions to the resulting governing 
equations are removed by an automatic thresholding  procedure3,5,7. These two steps of the method are detailed 
below.

Bayesian compressive sensing using Laplace priors (BCSL). We consider a generic linear equation system involv-
ing a given vector g and matrix � and an unknown, sparse vector w as

where the vector s represents noise or measurement errors. Here, w can be thought of as a solution vector 
appearing in an iterative solution procedure for Eqs. (5), (14), or Eq. (15). Various methods can be used to cal-
culate sparse solution vectors w from Eq. (16). In particular research on compressive sensing, which deals with 
the reconstruction of sparse signals from underdetermined systems, has yielded broadly applicable, efficient 
methods for finding sparse solution vectors w . Among these are Bayesian methods based on the relevance vec-
tor machine (RVM)38,39. Very sparse result vectors are obtained if a Laplace distribution is used as a prior prob-
ability distribution for w . Here, we employ a method called Bayesian compressive sensing using Laplace priors 
(BCSL)37. Specifically, we employ a variant of BCSL that interatively calculates approximate solutions, which is 
very computationally efficient and yields accurate results for our type of applications.

Briefly, the mathematical basis of BCSL is as follows, see Ref.37. The method is based on a three-stage hierar-
chical model. It is assumed that the errors s are drawn from a zero-mean Gaussian distribution with unknown 
variance 1/β > 0 . Therefore, the likelihood function for finding a vector g is given by

The unknown vector w is assigned a prior distribution, which represents our knowledge on the nature of this 
quantity. To encode sparsity, one would like to employ a Laplace prior p(w|�) = �/2 exp(−�

∑

i |wi|/2) with a 

(15a)F
(1)
ℓ = �({Xℓ′ })W(1)

ℓ ,

(15b)F
(2)
ℓ = �({Xℓ′ })W(2)

ℓ ,

(16)g = �w + s,

(17)p(g|w,β) =
(2π

β

)− N
2
exp

{

− β

2
�g −�w�22

}

.
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hyperparameter � . However, the evaluation of integrals using this choice of a Laplace prior is not readily achieved 
since the Laplace prior is not conjugate to the Gaussian likelihood, Eq. (17). Therefore, an auxiliary vector of non-
negative hyperparameters γ with the same dimension as w is employed to express the prior as the convolution 
of the two different distributions p(w|γ ) = �i

[
exp (−w2

i /(2γi))/
√
2πγi

]
 and p(γ |�) = �i

[
� exp (−�γi/2)/2

]
 . 

These two distributions together result in a Laplace prior after marginalizing out γ as

see Ref.40. Overall, the joint probability density results as

where the parameters � and β are both assumed to obey Gamma distributions. To infer values for the most 
probable solution vector w as well as the hyperparameters, an evidence procedure is employed wherein the 
posterior probability p(w, γ , �,β|g) is maximized with respect to w , γ , � , and β , given the data. By making use 
of the expression

together with Eq. (19), one sees that the value of w that maximizes the posterior can be determined by simply 
maximizing p(g|w,β)p(w|γ ) . This calculation yields for the result vector the expression w∗ = β��Tg with 
� = (β�T�+�)−1 and � = diag(1/γi) . This step corresponds to a Ridge regression that depends on the 
unknown values of γ , � , and β . Determination of these hyperparameters proceeds by maximizing

with respect to γ , � , and β . Here, p(γ , �,β , g) is calculated from the right hand side of Eq. (19) by integrating 
out w . With the fast, approximate version of BCSL, the equations determining the optimal values of the hyper-
parameters are solved iteratively, where only one entry of the vector γ is adjusted in every step.

Automatic thresholding. Solution of the inverse problem (16) with BCSL typically yields vectors w that contain 
only a few large entries, but also a number of very small, non-zero entries. Removal of these negligible entries 
is desirable and we improve the solution sparsity with an iterative thresholding  procedure4. The pseudocode 1 
illustrates how the thresholding procedure proposed in in Ref.4 is combined with BCSL proposed in Ref.37. 
Briefly, the thresholding algorithm works as follows. The input is given by g , the library matrix � , an initial 
increment dtol for the threshold tol, and the maximum number of iterations niters . The data g and � is spilt into 
two parts for training and test, respectively. Usually, 80% of the data is used for training and 20% for testing. 
Thresholds are calculated iteratively from the training data and the validity of the thresholds is evaluated based 
on the error resulting from their application to the test data. The core part of the algorithm is a loop for iterative 
calculation of the sparse vector w and the threshold tol. In each iteration step, the approximate, fast BCSL routine 
is first employed to obtain an estimate of w from the training data. The quality of this solution estimate is evalu-
ated by calculating the resulting error with the test data

where the penalty factor of the solution norm is chosen to depend on the condition number as η = 10−3 κ(�) , 
as suggested for the original  algorithm4. If the error of the current solution is smaller than the error of previous 
iterations, the new solution is accepted and the threshold tol is increased. In the opposite case, the threshold is 
decreased and the increment dtol is refined. The final solution wbest is the sparse vector that determines the terms 
in the governing differential equations, SDEs, ODEs, and PDEs.

(18)p(w|�) =
∫

p(w|γ )p(γ |�)dγ = �
N/2

2N
e−

√
�
∑

i |wi |,

(19)p(g,w, γ , �,β) = p(g|w,β)p(w|γ )p(γ |�)p(�)p(β),

(20)p(w, γ , �,β|g) = p(w|g, γ , �,β)p(γ , �,β|g) = p(g,w, γ , �,β)

p(g)

(21)p(γ , �,β|g) = p(γ , �,β , g)

p(g)

(22)e = ��testw − gtest�22 + η�w�0,



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21691  | https://doi.org/10.1038/s41598-022-25638-9

www.nature.com/scientificreports/

Quality score for identified governing equations. The error of the inference procedure can be directly 
quantified by comparison of the results with a known set of original differential equations in test cases. For this 
purpose, we define the deviation of identified coefficient (DIC) as

where every wi is a coefficient of one term in the identified equation and w′
i is the related coefficient in the origi-

nal equation that was used to generate the test data. Here, at least one of the coefficients in each pair {wi ,w
′
i} is 

required to be non-zero and the sum only runs over these coefficients. K represents the number of these coef-
ficients. The DIC lies in the range [0,∞] where 0 indicates a perfectly identified equation.

(23)DIC = 1

K

∑

{i|(wi �=0∨w′
i �=0)}

|wi − w′
i |

max(|wi|, |w′
i |)

,
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Results
Inference of SDEs from noisy trajectories. We first illustrate data-driven identification of SDEs by the 
example of overdamped Brownian motion of a particle inside a one-dimensional double-well potential with 
coordinate x. The drift and diffusion coefficients of this system are given by 

The trajectory data that is to be used for inferring the governing equation is generated by integrating the 
Langevin equation with the Euler-Maruyama method. A trajectory X is shown in Fig. 1a-i ( 106 time steps). The 
trajectories F(1) and F(2) are shown in Fig. 1a-ii,iii. To visualize the x- dependence of the estimator for the drift 
coefficient, we plot F(1) against X , see Fig. 1c-i. Similarly, F(2) is plotted against X as estimator of the diffusion 
coefficient D(2)(x) in Fig. 1c-ii. Both plots exhibit large fluctuations around the true drift and diffusion coefficients 
and the resulting averages are clearly prone to errors, particularly at the boundaries of the sampled domain.

Using the trajectory data, we next construct a library consisting of 11 terms for the drift coefficient and 6 
terms for the diffusion coefficient as illustrated in Fig. 1b. Then, we employ ATSBL to identify W(1) and W(1) 
directly from the trajectory without binning. The identified x-dependent functions for the drift and diffusion 
coefficients are plotted in Fig. 1c-i,ii. They agree well with the original functions used for creating the data. The 
identified equations with estimated uncertainties are shown in Fig. 1c.

(24a)D(1)(x) = −2x3 + 12x2 − 18x + 3,

(24b)D(2)(x) = 0.8.

Figure 1.  Data-driven discovery of a one-dimensional SDE with automatic threshold sparse Bayesian learning 
(ATSBL). (a-i) Trajectory of a particle undergoing overdamped diffusive motion in a double-well potential ( 106 
time steps). (a-ii,a-II) Values of the F(1) and F(2) generated with discrete differences from the same trajectory. (b) 
The library matrix � is constructed by evaluating a given set of functions for all values of the trajectory. Thereby, 
one obtains linear equation systems that relate the known sequences F(1,2) to unknown, sparsely populated 
coefficient vectors W(1,2) . The determination of the non-zero entries of W(1,2) yields a set of library functions 
that together describe the drift and diffusion coefficients D(1) and D(2) . (c) Exemplary results of the inference 
procedure. Despite the large noise amplitude, accurate predictions can be made directly from the trajectory 
data. (d) Comparison of the use of a Laplacian and Gaussian prior distribution in the inference procedure. The 
deviation of the identified coefficient (DIC) for the drift coefficient is plotted against the number of data points 
used for training. The Laplace prior in ATSBL decreases the error and reduces the required sample size. (e) 
Convergence rate of the thresholding procedure for Laplacian and Gaussian prior distributions. (e-i) Laplace 
priors result in fast threshold convergence. (e-ii) The error e defined in Eq. (22) decreases during the iterations. 
Errors achieved with Gaussian- and Laplacian priors are comparable.
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The main distinction of ATSBL as compared to established inference techniques is the assumption of a 
Laplacian distribution for the prior of the library coefficients. The more direct, albeit theoretically less sparsity-
promoting procedure is to employ a Gaussian prior, corresponding to a ridge regression with fixed regulariza-
tion parameter, for inference of the solution vector w in Eq. (16) prior to automatic thresholding, as done, e.g., 
in Ref.4. To compare the performance of these two approaches for inference of SDEs, we evaluate the deviation 
of the identified coefficients, DIC, as a function of the number of data points used for inference. The results 
shown in Fig. 1d indicate that the Laplacian prior is preferable over the Gaussian prior since it requires less data 
and results in a smaller DIC. To further establish the robustness of ATSBL, we consider the convergence of the 
iterative thresholding procedure for each of the two prior distributions. The result shown in Fig. 1e-i,ii demon-
strate a better convergence achieved in the case of the Laplacian prior. For both, Gaussian and Laplacian prior 
distributions, the threshold and the error oscillate during the iteration process, which is due to the adaptive step 
size during the thresholding.

Inference of SDEs with time-dependent drift coefficient. In the previous section, an example is pro-
vided of how the KM coefficients can be obtained by performing a regression directly with the trajectory data. 
The direct use of the trajectory data becomes particularly important for the treatment of the more complex situ-
ation of a time-varying force. In such a situation, the probability distributions change over time and a histogram-

Figure 2.  Inference of KM coefficients for one-dimensional SDEs. (a) System with a time-dependent force field. 
(a-i) Trajectory of an overdamped motion in a time-varying double-well potential. (a-ii,iii) Using an appropriate 
function library, the functional forms of the KM coefficients can be faithfully reconstructed. Blue dots are 
values of F(1,2) estimated from the trajectory. (b) Advantage of data binning for analysis of short trajectories. 
(b-i) Trajectory resulting from overdamped motion in a double-well potential with space-dependent diffusion 
coefficient. (b-ii,iii) Inferred x-dependence of the KM coefficients for short trajectories ( 2× 105 time steps). 
The unpopulated regions in phase space are characterized by a high uncertainty of inference and therefore 
lead to large deviations in the coefficients. (b-iv) Histogram of particle positions for the trajectory shown in 
(i). (b-iv,v,vi) Binned distributions can be used to infer the KM coefficients, but large errors occur in regions 
that are not well-sampled. Inference errors due to incomplete phase-space sampling for short trajectories can 
be accounted for by excluding the data below a probability threshold, corresponding to large uncertainty. (b-
vii) Performance of the inference with data binning and without data binning for short and long trajectories 
( 2× 105 and 2× 107 time steps, respectively). The shown DIC is the average of the DICs for D(1) and D(2) . For 
long trajectories, data binning does not reduce the error.
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based approximation of the dynamic distributions can be technically challenging and requires the availability of 
many sample trajectories for the same conditions. In order to explore the validity of our approach in this situ-
ation, we consider the example of a particle diffusing within a time-dependent one-dimensional potential. The 
drift and diffusion coefficients of this system are given by 

 with a0 = 5× 10−3 . The potential has a double-well shape, where the positions of the two minima vary in time. 
The two minima start at separate positions and merge periodically into one minimum before separating again 
to reach the initial positions. Each time the potential wells come close to each other, the transition probability 
becomes large and the particle is likely to change from one well to another. This gives rise to stochastic oscilla-
tions between the two potential wells. To test whether the underlying equations can be inferred with a library 
constructed from a single trajectory, we assume that the frequency ω at which the potential changes is known. 
Inference of this frequency from the data is in principle also possible, but requires excessive computational power 
since high-order terms with explicit time-dependence must be accounted for in the library. We construct a library 
consisting of a time-dependent and a time-independent part. The first half of the library is simply a polynomial 
basis, the second half corresponds to the polynomial basis multiplied with a cos(ωt) factor. The results of the 
inference procedure are shown in Fig. 2a. The inferred equation is in agreement with the correct equation. For 
illustration, we plot snapshots of the drift and diffusion for the original equations and the inferred equations 
in Fig. 2a-ii,iii. Note that the inference procedure for first-order SDEs shows a remarkable performance even 
though only one sample trajectory is used for inference.

Data binning for inference of SDEs from short trajectories. An inference method that relies on 
direct use of sample trajectories for a regression can become unreliable when confronted with short trajectories 
in an inhomogeneous force field. In such a situation, we find that it is more appropriate to employ data binning. 
We illustrate this procedure with Brownian motion of a particle in a one-dimensional double-well potential 
where the diffusion coefficient depends on space. The drift and diffusion coefficients of the model are given by 

We first consider short trajectories that have 2× 105 time steps, exemplified by the plot in Fig. 2b-i. The raw 
data and the binned data are shown in Fig. 2b-ii,iii and b-v,vi, respectively. For this example, 200 data bins are 
employed. The distributions approximated by the binned data clearly deviate from the known functions D(1)(x) 
and D(2)(x) in undersampled regions. Therefore, the binned data is filtered to remove data points with high 
uncertainty. This filtering is done as described in the “Methods” section by discarding bins below a probability 
threshold p∗ that is determined by entropy  maximization35, see Fig. 2b-iv. To assess if binning and filtering is 
also beneficial for inference of SDEs from long trajectories, we also use data from trajectories with 2× 107 time 
steps. Figure 2b-vii shows the errors of the identified coefficients.

For short trajectories, binning is advantageous in combination with a filtering procedure to suppress data 
with high uncertainty. The reason for this result can be understood from inspection of Fig. 2b-v,vi, where the 
inferred functions match the correct functions only in the most populated regions of phase space. Thus, the 
exclusion of data points with high uncertainty prevents overfitting and improves the inference of the underlying 
dynamical equations if the trajectory is not long enough to allow a sufficient sampling of the whole phase space. 
Conversely, data binning with or without filtering is disadvantageous for the analysis of long trajectories that 
sample the whole phase space, see Fig. 2b-vii.

Active sampling improves the identification of SDEs. We have so far restricted our attention to the 
extraction of estimates from data that was generated prior to the analysis, e.g., in experiments. Thereby, we have 
assumed that the size of the data set is large enough to allow some form of inference of the governing equations. 
In a different scenario one might have the ability to perturb the studied system, either in a computer simulation 
or in an experimental setup, while simultaneously recording the data. Then, one may enhance the sampling 
efficiency by means of an appropriately designed perturbation that is applied to the system. Generally, this meth-
odology is expected to be useful whenever the system exhibits an energy landscape with multiple local minima 
that can trap the trajectory for long times. We describe an adaptive control method where the inference of the 
dynamical equations together with a simultaneous perturbation of the system recursively results in a global 
exploration of the phase space to provide sufficient sampling everywhere.

Since the probability distribution tends to be peaked around local energy minima, the dynamical equa-
tions can be estimated locally near these minima. To take advantage of this local estimation while iteratively 
extending the sampled region, we re-sample repeatedly while applying in each sampling round a control force 
that is opposite to a force from the system that is estimated locally from previous rounds. The difficulty with 
a straight-forward application of this method is that the control force can admit large deviations away from 
the initial estimation region. This effect produces large errors, slows down convergence, and may even lead to 
divergence problems. We overcome this problem by weighting the control force with a Gaussian distribution, 
such that the control force vanishes away from the current estimation region. This local control force expels the 

(25a)D(1)(x) = [a0 + 1− cos(ωt)]x − x3,

(25b)D(2)(x) = 0.8,

(26a)D(1)(x) = −2x3 + 12x2 − 18x + 3,

(26b)D(2)(x) = x2 − 2x + 2.
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trajectory from the energy minimum where the estimation has been performed and the trajectory eventually 
reaches another local minimum.

The method, which we call automatic iterative sampling optimization (AISO), is illustrated in Fig. 3a,i–iii and 
the pseudocode is provided in Algorithm 2. At each iteration, the underlying dynamical equations are estimated 
from the data accumulated during all previous iterations. The negative of the inferred drift term is employed 
locally as control force. The center and width of the Gaussian weight of the control force is calculated only from 
the mean and standard deviation of the trajectory of the previous step. Thus, we define our control force acting 
on the component ℓ as

where the index i indicates that values are to be taken at the iteration number i; µi
ℓ and ζ iℓ stand for the mean 

and variance of the trajectory extracted from the step i in each iteration. After a sufficient number of iterations, 

(27)ciℓ({Xℓ′(t)}) = −�ℓ({Xℓ′(t)}) · wi exp

[

−� Xℓ(t)− µi
ℓ �2

ζ iℓ

]

Figure 3.  Active learning with automatic iterative sampling optimization (AISO). (a) Schematic presentation 
of automatic iterative sampling optimization for the case of Brownian diffusion (a-i). Initially, the particle is 
trapped in a local energetic minimum and the functional form of the potential can therefore only be inferred 
locally. (a-ii) After the first iteration step, the potential hypersurface near the estimated minimum is flattened 
and the particle can thus explore other regions of phase space. The same procedure is repeated iteratively 
and the control is always applied at the minimum estimated during the previous iteration. (a-iii) Schematic 
representation of the main feedback control loop. (b-i) Trajectory of a particle undergoing Brownian motion in 
a one-dimensional three-well potential. The green curve shows a trapped trajectory while the blue curve shows 
a trajectory in the presence of control forces. (b-ii) The deviation of the inferred coefficients (DIC) decreases 
during the iterations. (b-iii) The identified drift field converges to the correct function during the iteration. (b-
iv) Trajectory of a particle undergoing diffusion in a two-dimensional force field. The green curve exemplifies a 
trapped trajectory for plain sampling. The blue curve shows an example of a trajectory in the presence of control 
forces. The color of the background only represents part of the force field, namely a Mexican hat potential 
V(x, y) = −(x2 + y2)/2+ (x2 + y2)2/4 that generates radial forces. (b-v) Evolution of the of the DIC during 
the iterations. (b-vi) Streamlines of the identified drift field (pink) and streamlines of the correct drift field 
(black) after the first iteration step. (b-vii) Streamlines of identified drift field (pink) and streamlines of the 
correct drift field (black) after the tenth iteration step. The identified force field at the end of the iteration closely 
matches the original one.
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the data points accumulated from all iterations are combined and the equation of motion is extracted from the 
accumulated data. This procedure is repeated for a predefined number of iteration steps. For the examples pre-
sented in the following, the iteration step number has been fixed to N = 10 , since convergence has been achieved 
within less than 10 steps in these cases.

For a first demonstration of our method, we employ a three-well potential U(x) = x6 − 6x4 + 0.5x3 + 8x2 
with a constant diffusion coefficient for simulating the trajectory of a particle in one dimension. The drift and 
diffusion coefficients are 

 Next, we also consider a two-dimensional drift field, consisting of a radially symmetric component and a shear 
component in the x, y-plane. The drift and diffusion coefficients are given by 

 Using these driving forces, we simulate trajectories with 105 time steps with one time step being �t = 5× 10−3 . 
Parts of the trajectories on the potential maps are shown in Fig. 3b-i,iv. Results for the intermediate iteration 
steps are shown together with the drift field in Fig. 3b-iii,vi. As the algorithm proceeds through more iterations, 
the coefficients of the control potential approach the coefficients of the correct drift field, and the expulsion from 
each local minimum becomes more efficient, Fig. 3b-iii,vii. This results in an enhancement of rare events where 
the particle crosses the saddle points, as illustrated in Fig. 3b-i,iv by the controlled and uncontrolled trajectories. 
The error is quantified by calculating the coefficients D̃(1)(x) and D̃(2)(x) in each iteration. The DIC reduces from 
1 to nearly 0.01 during the iterations, see Fig. 3b-ii,v. Thus, the terms of the identified equations approach those 
given in the original equations.

(28a)D(1)(x) = −dU

dx
= −6x5 + 24x3 − 1.5x2 − 16x,

(28b)D(2)(x) = 1.

(29a)D(1)
x (x, y) = x(1− x2 − y2)+ y(x2 − y2 − b)

(29b)D(1)
y (x, y) = y(1− x2 − y2)+ x(x2 − y2 − b),

(29c)D(2)
x (x, y) = D(2)

y (x, y) = 1.

Figure 4.  Example for data-driven discovery of ODEs with ATSBL. (a) Plot of a numerically 
integrated trajectory for t ∈ [0, 25] with a time step of �t = 2× 10−4 and an initial condition as 
[x0, y0, z0] = [−8, 8, 27] . (b) The table shows the original ODEs, i.e., the Lorenz system, and the identified 
ODEs from noise-free data and data with 2% Gaussian noise.
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Identification of ordinary and partial differential equations. It is next shown that the sparse infer-
ence scheme based on Laplace priors that is implemented with ATSBL can also be used for data-driven discovery 
of ordinary and partial differential equations. The identification of ODEs from trajectory data is demonstrated 
with a Lorenz system, which is a paradigm for chaotic  behavior41. The Lorenz equations are given by 

(30a)
∂x

∂t
= a(y − x),

Figure 5.  Demonstration of data-driven discovery of PDEs with ATSBL using a reaction–diffusion system. 
(a-i,ii) Snapshots of the initial conditions for the variables u and v, respectively. (a-iii,iv) u and v at time t = 0.3 . 
(b) The table shows the original PDEs for the reaction–diffusion system and the identified PDEs for noise-free 
data and data with 2% Gaussian noise. Inference is conducted with a library containing 35 terms. The numerical 
calculations are done with a time step �t = 0.0034 in the time interval t = [0, 0.6] . The space domain has size 
20× 20 and is covered with a 256× 256 grid with periodic boundary conditions.
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 where the parameters are fixed as a = 10 , b = 28 , and c = 3/8 . We numerically integrate these equations to 
obtain a trajectory as shown in Fig. 4a. The chaotic system involves two attractors. For data-driven system 
identification, we utilize three identical libraries � for each of the variables, x, y and z. � is constructed from 
the simulated trajectory and includes 56 terms containing up to fourth powers of all variables. Time-derivatives 
are calculated using fourth-order central-difference approximation. The general ODEs constructed from the 
library as in Eq. (4) are represented by three linear equation systems. The estimated equations resulting from an 
application of the inference procedure to noise-free data have small errors that are in magnitude comparable to 
the time step �t = 2× 10−4 , see Fig. 4b. The same inference procedure is then repeated for a trajectory with 
additive Gaussian noise. The standard deviation of the noise in each coordinate is chosen to be 2% of the stand-
ard deviation of the noise-free data in the same coordinate. For this case, the ODEs identified with ATSBL still 
contain all the correct terms and the errors in the inferred system parameters are in the percent range, see Fig. 4b.

Finally, we demonstrate data-driven discovery of PDEs with ATSBL. Reaction–diffusion equations have 
attracted interest as prototypic models for pattern formation in biochemical systems, where constituents are 
locally transformed into each other through chemical reactions and transported in space by diffusion. Here, we 
consider the popular �− ω system, given by

where β is equal to 2. A two-dimensional, planar, rectangular area with periodic boundary conditions is consid-
ered. The initial values of u and v are shown in Fig. 5a-i,ii. The reaction–diffusion equations are solved numeri-
cally by using a spectral method. Snapshots of u and v are shown in Fig. 5a-iii,iv. For inference of the governing 
PDEs, a library matrix � is constructed containing 35 terms each for the time derivatives of u and v . Then, 
using ATSBL, the reaction–diffusion equations are inferred from the simulated data, as illustrated in Fig. 5b. 
For noise-free data, the identified equations deviate from the original equations only at the fourth decimal place 
and this error is due to discretization. However, if u and v are corrupted with additive noise, identification of the 
correct PDEs becomes  challenging4. In Ref.4, it has therefore been suggested to include a denoising step prior to 
the inference step. Accordingly, we employ a curvelet denoising  method42, which permits reconstruction of the 
reaction–diffusion equations from data with 2% noise with ATSBL, as illustrated in Fig. 5b.

Summary and outlook
Data-driven, automatic discovery of governing equations has become a viable tool for studying complex systems 
if first-principle derivations are intractable, e.g., for biological systems or epidemiological data. The aim is here 
generally to construct an analytical model that characterizes the observed dynamics and extends to parameter- 
and phase space regions that are hard to access experimentally.

Our main contribution is an inference method that makes use of Laplacian prior distributions in a Bayes-
ian framework to find a minimal set of governing equations without the need for user input. We establish the 
validity of this approach and compare it to other methods. Regarding data-driven discovery of Langevin-type 
SDEs, we show that the proposed sparse method converges faster than other methods based on ridge regression. 
Maximum likelihood methods for the estimation of parameters in SDEs are not considered here, see Ref.8 for 
an introduction to those methods. For the studied Langevin SDEs, we find that a binning of the trajectory data 
for inference of the drift and diffusion coefficients is only advantageous if the phase space is sampled sparsely. 
In that case, the error of the inference procedure can vary strongly in phase space since the relative uncertainties 
of the probabilities vary. A filtering procedure consisting of the exclusion of data with high uncertainty results 
in a significantly improved inference accuracy.

Next, we investigate how active-learning procedures can be useful when a direct inference of the global 
dynamics is difficult because of a trapping of trajectories in local energetic minima. This problem can be solved 
with well-established umbrella-sampling methods where quadratic bias potentials are employed to reduce the 
energetic barriers in the original potential  landscape18,43. However, an appropriate parameterization of such 
bias potentials can be challenging. For example, if the bias potentials are intended to smoothen an unknown, 
rough energy landscape. Instead, we employ the methods for data-driven identification of governing equations 
to calculate time-dependent external perturbations that force the trajectory to explore the full phase space. The 
main feature of our method is that the parameters that determine the applied perturbations correspond to the 
parameters that define the energy landscape. The combination of iterative inference with system perturbations 
can significantly improve the speed and accuracy of the overall inference procedure. We therefore hope that the 
suggested active learning procedure will extend the applicability of data-driven methods, in particular in the 
context of computer simulations.

A central challenge related to the improvement of the library-based methodology for identification of analyti-
cal models is to find automated approaches for tailoring the employed function space to the problem at hand. 

(30b)
∂y

∂t
= x(b− z)− y,

(30c)
∂z

∂t
= xy − cz,

∂u

∂t
= Du∇2u+ �(A)u− ω(A)v,

∂v

∂t
= Dv∇2v + ω(A)u+ �(A)v,

A = u2 + v2, ω = −βA2, � = 1− A2,
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Recent methodological advances suggest that a possible solution is the integration of physical constraints, such 
as symmetries, conservation laws, or even thermodynamics, into a generic framework for statistical learning of 
governing  equations44. Data-driven identification of analytical models thus has the potential to become a popular 
tool for closing the gap between non-parametric, empirical modeling and first-principles-based modeling in 
the coming years.

Data availability
Source code and data can be obtained from the corresponding author upon request.
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