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Quantum computing 
and preconditioners 
for hydrological linear systems
John Golden 1*, Daniel O’Malley 2 & Hari Viswanathan 2

Modeling hydrological fracture networks is a hallmark challenge in computational earth sciences. 
Accurately predicting critical features of fracture systems, e.g. percolation, can require solving large 
linear systems far beyond current or future high performance capabilities. Quantum computers can 
theoretically bypass the memory and speed constraints faced by classical approaches, however 
several technical issues must first be addressed. Chief amongst these difficulties is that such systems 
are often ill-conditioned, i.e. small changes in the system can produce large changes in the solution, 
which can slow down the performance of linear solving algorithms. We test several existing quantum 
techniques to improve the condition number, but find they are insufficient. We then introduce the 
inverse Laplacian preconditioner, which improves the scaling of the condition number of the system 
from O(N) to O(

√

N) and admits a quantum implementation. These results are a critical first step in 
developing a quantum solver for fracture systems, both advancing the state of hydrological modeling 
and providing a novel real-world application for quantum linear systems algorithms.

Quantum algorithms for solving linear systems offer a potential for a practical quantum advantage over classi-
cal  algorithms1. However, several technical and conceptual challenges remain before a meaningful, real-world 
example of quantum advantage can be exhibited for linear systems. On the technical side, many of these quantum 
linear systems (QLS) algorithms can only be implemented on future error-corrected  hardware1, while others 
are designed for today’s noisy intermediate-sized quantum devices but feature a less pronounced speed-up2. 
On the conceptual side, existing algorithms feature numerous caveats that must be satisfied in order for good 
 performance3. The ideal system Ax = b for exhibiting quantum speed-up satisfies: (1) A is well-conditioned, 
(2) the quantum operator e−iAt can be efficiently implemented, (3) a quantum state proportional to b can be 
efficiently prepared, (4) only specific values or statistics of the solution x are of interest, (5) there does not exist 
a classical algorithm which exploits these or other properties of the system to solve it equally as fast. The final 
point is particularly notable, as large systems of equations can often be replaced by small systems of equations 
which retain sufficient accuracy (and can be solved classically with modest cost)4. Existing applications for QLS 
algorithms have therefore been largely synthetic or specific examples, carefully chosen to avoid these constraints 
but also lacking in real-world  application5,6.

In this work we initiate the study of simulating fluid flow through fracture systems with QLS algorithms. 
Hydrological flow is a very challenging problem in geophysics, because the contrast between the scales on 
which simulations are often done (kilometers or larger) and the scale of heterogeneities (centimeters or smaller) 
requires discretizing the problem over very large meshes. Here we address the common problem of determining 
the pressure of a subsurface liquid (e.g. water or oil), either at a specific location, i.e. at a well, or averaged across 
a wide region, i.e. effective permeability. Extracting the pressure at an individual location or studying averaged 
properties (rather than needing exact pressure at every point in the system) addresses point 4 in our list of QLS 
requirements. As we argue in section “Fracture networks and coarse-graining”, this type of problem cannot be 
reduced to a smaller system of equations without losing critical information, and so current classical techniques 
cannot capture the full scope of the problem at real-world scale (point 5). Since the matrices A appearing in 
subsurface flow applications are generally sparse, and the vectors b are relatively uniform, points 2 and 3 are 
plausibly addressed via quantum  RAM3. However, these points are quite nuanced and will be studied in detail 
in a future work.

Our focus for this work is point 1, improving the condition number of the linear system. The condition num-
ber of a matrix describes how sensitive the system is to small perturbations, or more specifically, how much an 
error in the right hand side, b, propagates to an error in the solution, x, in the worst case. Easy matrices, such as 
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unitary matrices, have condition number 1 and increasing the condition number makes the linear system harder 
to solve. Both quantum and classical linear systems algorithms generally perform worse on systems with large 
condition numbers. Classical methods to reduce the condition number, known as preconditioners, have been 
successfully developed and tailored specifically for fracture systems, the most prominent example being multigrid 
 preconditioners7. However, they cannot simply be ported directly onto quantum computers due to the drasti-
cally different underlying technologies and algorithmic design  constraints8. Therefore, in order to use quantum 
computers to solve large linear systems for fracture networks of relevance and outpace classical techniques, an 
effective quantum preconditioning algorithm for fracture networks must be developed. A good preconditioner 
is generally tied to the type of linear system being solved and exploits some underlying mathematical or physi-
cal structure in the problem. Meanwhile, one must also find an efficient way of calculating the preconditioned 
form of the system, which will be necessary to do on the quantum computer itself for very large systems due 
to memory constraints. These two constraints—tailored to a specific application while also having an efficient 
quantum implementation—are likely to play a prominent role in future attempts to solve large, interesting linear 
systems on quantum computers.

We show that existing techniques to reduce the condition number either do not have quantum implementa-
tions or are not well-suited for fracture systems. However, we find that the inverse Laplacian is both effective 
on fracture systems and can be efficiently implemented on a quantum computer. See Fig. 1 for a summary of 
our results. Furthermore, we show that realistic fracture systems can be solved by a quantum computer with a 
polynomial advantage over classical approaches. Finally, we discuss the remaining algorithmic bottlenecks which 
need to be resolved to unlock the full potential of QLS for fracture systems.

Results
In this section, we describe the geophysical problem in further detail and argue why it is not fully tractable 
for classical computers (section “Fracture networks and coarse-graining”). We then review the three existing 
quantum preconditioner algorithms and study how well they improve the condition number of several synthetic 
fracture network examples. The condition number (without preconditioning) of these examples all scale as O(N), 
and the best of the preconditioners reduces this scaling to roughly O(

√
N) (section “Test of existing quantum 

preconditioners”), which is potentially sufficient to produce a polynomial advantage over classical techniques. 
Finally, we analyze how incorporating the preconditioner into a full QLS algorithm might affect overall runtime 
(section “Algorithmic scaling with inverse Laplacian preconditioner”).

Fracture networks and coarse-graining. In a complex fracture network, fractures of many scales—
from kilometers to centimeters—intersect. Critically, small fractures cannot generally be neglected because 
these can transform the network topology radically, e.g. pushing a system over a percolation threshold, see 
Fig. 2. Small fractures may also collectively contribute a large surface area to the network providing a critical 
connection between fractures and the underlying rock. When modeling flow in these networks, it is there-
fore critical to include the full range of fracture scales, which has led to the development of advanced meshing 

Figure 1.  Summary of results. (a) Common requirements for good performance from QLS algorithms, and the 
ways in which subsurface flow problems can be made to meet them. Our primary contributions in this work 
are points 1 and 5, namely, introducing the inverse Laplacian preconditioner and providing arguments against 
the scalabality of classical methods. (b) Existing quantum preconditioners are not effective on subsurface flow 
through fracture systems, while classical fracture preconditioning techniques cannot reasonably be enacted via 
quantum algorithms. The inverse Laplacian is well-suited to fracture systems while also being efficiently realized 
on a quantum computer.
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 techniques9 and high-performance  simulators10. However, these approaches do not provide a viable path to 
modeling the full range of scales. Even state-of-the-art high-performance computers and cutting-edge methods 
can only model large fracture networks with fracture lengths varying over three orders of  magnitude11. Modeling 
real-world fracture networks to a high degree of accuracy requires meshes far beyond current or future classical 
capabilities—e.g., a 1km domain with a 1cm resolution would require 1015 degrees of freedom. Larger systems of 
equations would be needed for larger domains or more finely resolved meshes.

Numerical models of subsurface flow in a fracture network are based on a discretized version  of7

where k is the permeability, f is the fluid flux, and h is the pressure. Each of k, f, and h is a funciton that varies 
spatially throughout the domain. The pressure is key for applications of subsurface flow such as waste fluid 
disposal and hydraulic  fracturing12. It is also critical for transport applications, since pressure gradients drive 
the transport. In fractured systems, k is highly heterogeneous with a sharp increase when moving from the rock 
matrix (where k is small) to a fracture (where k is large).

We discretize Eq. (1) using a two-point flux finite volume method, which is one of the standard numerical 
schemes used in subsurface flow solver code bases including: fehm13, tough214, and pflotran15. The two-point 
flux finite volume method ensures mass conservation, which is a highly desireable property for these numerical 
solvers. This results in a coefficient matrix which is sparse, symmetric, and positive definite. We treat the per-
meability of the rock matrix as being constant. While the approximation is imperfect, it is a major step up from 
discrete fracture networking approaches which effectively treat the rock matrix as having zero  permeability7. 
This approach does, however, capture the basic physics of fracture flow—most but not all of the flow occurs in 
the high-permeability fractures.

In this work, we study a variety of 2D fracture network models. The simplest system we studied involved two 
fractures intersecting in a -configuration, and we then studied fractal-style recursion of the -system to gener-
ate more complicated fracture networks, see Fig. 3. The relative permeability of the fractures as compared to the 
underlying rock is a critical parameter in the analysis of fracture systems, and we studied five different types: 

Fracture Type 1: “Simple, Low” is the -system with fracture 10% more permeable as the underlying rock.
Fracture Type 2: “Simple, High” is the -system with fractures 104 times more permeable than the underlying 

rock.
Fracture Types 3 and 4: “Fractal, Low/High” are the same as above, but with the fractal system.
Fracture Type 5: “Fractal, Var.” is the fractal system where the fractures have permeability contrast that scales 

down as the fractures get smaller, i.e. largest fractures have contrast 104 and the smallest fractures have con-
trast 1.1, with the contrast scaling down as the (fracture length)1/2 , commonly used in  pracice11.

Test of existing quantum preconditioners. Recently developed QLS algorithms provide a novel path 
to modeling the full complexity of fracture networks. Since a quantum computer with n qubits can represent 
a 2n dimensional vector, vast systems of equations can be solved with a small number of qubits. That is, for the 
1km domain with a 1cm resolution problem described above, a quantum computer could require as few as 
O(log(1015) ≈ 50) qubits, whereas a classical computer would require O(1015) classical bits. While additional 

(1)∇ · (k∇h) = f

Figure 2.  Fracture systems feature critical behavior, such as percolation, which is only apparent when taking 
many length scales in to account. Here we give a simplified conceptual diagram of the heirarchical structure of 
fracture networks. This model highlights how percolation, which has a large impact on effective permeability, 
is the result of many fractures of different lengths intersecting (here all fractures are represented as lines in two 
dimensions and we do not explicitly model the width or aperture). The red/blue/green colors indicate connected 
components in the fracture network—the blue connected component in the right image results in percolation.
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quantum resources will likely be necessary, either in the form of ancilla qubits or quantum RAM, this highlights 
the raw potential of the quantum approach for the huge systems of equations necessary to accurately model 
realistic subsurface flow. Furthermore, the computational complexity of quantum linear systems algorithms can 
in some cases be exponentially better than the best classical  counterparts16.

The original QLS algorithm introduced by Harrow, Hassidim, and Lloyd (HHL)1 solves a sparse N-variable 
system of equations Ax = b with a runtime of O(log(N)κ(A)2) , where κ(A) := �A��A−1� is the condition num-
ber of A (in this work we use ‖A‖ with no subscripts to refer to the 2-norm (or operator norm), i.e. �A� ≡ �A�2 , 
and explicitly use ‖A‖F to refer to the Frobenius norm). The best classical algorithm, the Conjugate Gradient 
method, runs in O(N

√
κ(A)) on sparse matrices, so the quantum algorithm provides an exponential speed-up 

when κ(A) is small (for notational clarity, we often use ‘ κ ’ alone to signify κ(A)).
Since the introduction of the HHL algorithm, many more QLS algorithms have been introduced, including 

improvements to  HHL16,17, adiabatic  approaches18,19, and variational algorithms implementable on near-term 
quantum  computers2,5. A feature common to all of these quantum approaches is a scaling with κ that is linear 
at best, as compared to the O(

√
κ) scaling of the best classical approaches. A common technique in classical 

analysis is to further reduce κ by using a preconditioner. This technique relies on finding a matrix M such that 
κ(MA) ≪ κ(A) . One then finds the x satisfying MAx = Mb . The matrix M is generally dependent on the specific 
matrix A, and different preconditioning approaches have been developed for different contexts.

Despite the significant interest and activity in QLS algorithms, relatively little work has been done to develop 
application-specific preconditioning algorithms. It is important to emphasize that in this work we only consider 
preconditioning algorithms which are implementable on a quantum computer, as opposed to any sort of hybrid 
classical-quantum preconditioning method. While we do not rule out the possibility of such an approach, the 
extreme memory requirements of full-scale subsurface flow problems (as described above) suggests that cal-
culating the preconditioned matrix classically would be intractable. There are currently three general purpose 
quantum preconditioning algorithms in the literature: the circulant  method20, the sparse approximate inverse 
 method21, and the fast-inverse  method22. These algorithms are described in detail in section “Methods”, here we 
give only the salient points.

The circulant method is a one-size-fits-all approach, that is, the only input is a matrix A and the output is a 
preconditioner M. With SPAI one gives a sparsity pattern for the preconditioner M, and several techniques have 
been developed for determining good sparsity patterns for fracture  systems23. The fast-inverse method is designed 
for systems of the form A+ B , where A−1 can be easily calculated. One then uses A−1 as the preconditioner. 
As discussed in section “Methods”, fracture systems can be decomposed into �+ AF , where the Laplacian � 
describes the system in the absence of fractures, and AF is the contribution of the fractures. Because the singular 
value decomposition of the Laplacian is  known24, �−1 can be efficiently calculated and used as a preconditioner.

In Fig. 4 we numerically evaluate the effect of the circulant, SPAI, and inverse Laplacian preconditioners on 
all of the fracture types described in section “Fracture networks and coarse-graining” up to O(106) variables. To 
estimate how the preconditioner performance scales with N, we perform a linear regression on the logarithm 
of the final four data points for each preconditioner applied to each fracture type. We do not include the first 
points as they sometimes exhibited variance due to small matrix sizes, however for N > 103 , all of the results 
show clear exponential scaling in the number of qubits and polynomial scaling in the number of equations. We 
find that the circulant and SPAI methods are poor choices for the fracture systems under consideration. While 
these two preconditioners consistently reduce the condition number of the system, they do not improve how 
the condition number scales in N, which is necessary to unlock the full potential of QLS algorithms for large 
problems. The inverse Laplacian preconditioner, however, does meaningfully improve the scaling of the condi-
tion number. In the cases with low permeability contrast, the condition number of the system �−1A is very low, 
scaling as ≤ O(N0.05) . The high permeability contrast systems do not fair as well, with the κ of the preconditioned 
fractal system scaling as O(N0.6) . The fractal system with variable permeability, which is the most realistic of 
the systems under consideration, has a preconditioned κ which asymptotically scales as approximately O(N0.55).

Figure 3.  2D fracture networks under consideration. On the left, Fracture Types 1 & 2 feature a simple -style 
fracture network (with low & high permeability contrast, respectively). In the middle, Fracture Types 3 & 4 add 
more fractures via fractal recursion, keeping the permeability constant across fractures (again with low & high 
permeability contrast, respectively). On the right, Fracture Type 5 gives less permeability to shorter fractures.
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Algorithmic scaling with inverse Laplacian preconditioner. Identifying a preconditioner M which 
reduces the condition number of a system A is generally not sufficient to guarantee good performance of a 
QLS algorithm to solve the preconditioned system MAx = Mb . This is because one must find an efficient way 
to calculate the product MA in such a way as to make it readily accessible on a quantum computer. This can be 
accomplished either through a classical oracle which efficiently calculates MA, or through a quantum algorithm 
which uses oracles for A and M and then calculates MA. As described previously, in this work we only study 
cases where the preconditioner can be applied on the quantum computer itself, due to the considerable memory 
demands of full-scale hydrological simulations. Unfortunately, simply calculating MA in the general case on a 
quantum computer with generic matrix multiplication adds an O(N2)  overhead25 and would remove any benefit 
from the reduced condition number. Each of the three methods previously discussed get around this limitation 
through clever techniques: the circulant method calculates the product with the quantum Fourier Transform 
algorithm, the SPAI method exploits sparseness of M and A, and the fast-inverse method assumes efficient 
block-encodings of M and A.

As described in section “Test of existing quantum preconditioners”, the data presented in Fig. 4 shows that the 
circulant and SPAI preconditioners do not meaningfully improve the scaling in N of the condition number for the 
fracture examples considered in this paper. Therefore, it is not worth determining the full algorithmic runtime 
for implementing either of these preconditioners in a full QLS algorithm. However, the inverse Laplacian reduces 
the condition number to scale between O(N0.05) to O(N0.6) , which is potentially sufficient for an advantage over 
classical algorithms. It is thus instructive to estimate the impact the inverse Laplacian preconditioner has on the 
overall runtime for solving subsurface flow systems.

While implementing the inverse Laplacian preconditioner into the original HHL algorithm is potentially 
possible, the QLS algorithm of Tong et al.22 already gives a direct method of applying the preconditioner and 
solving the resulting system. We can therefore use the scaling of their algorithm as a proof-of-concept to gain 
an understanding of whether the inverse Laplacian improves the condition number sufficiently to recover some 
quantum speed-up. This analysis purposefully ignores intricacies resulting from points 2 and 3 in our list of 
QLS caveats, i.e. efficiently turning the classical data A and b into appropriate quantum states and operators. We 
emphasize that this analysis is intended as a conservative estimate of how a preconditioned QLS algorithm might 
scale when solving fracture systems. There are hopefully more efficient implementations, which we discuss more 
in section “Discussion” and will explore further in future work.

As we show in section “Methods”, the fast-inverse QLS algorithm with �−1 as the preconditioner gives a 
runtime bounded below by

Figure 4.  Efficacy of the preconditioners under analysis. The inverse Laplacian �−1 gives the best scaling in all 
cases, while the circulant and SPAI preconditioners reduce κ(A) but do not significantly improve the scaling in 
N. There are fewer data points for the circulant and SPAI preconditioners due to computational constraints.
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The scaling in N of �A−�� and �A−1�� are dependent on the exact fracture systems being studied and must be 
determined experimentally. In Fig. 5 we show the scaling of these components for the fractal system with variable 
contrast. We focus on this particular example since it is the most realistic of the different fracture types. As was 
the case in section “Test of existing quantum preconditioners”, we estimate the large-N scaling of the different 
components by linear regression (on the log-log plot) of the data points for N > 103 . In Table 1 we summarize 
the scaling of each component as well as the overall scaling (modulo log(N) ) compared with the scaling for 
Conjugate Gradient on the same systems.

Using the fast inverse QLS algorithm with the inverse Laplacian preconditioner, we can potentially achieve 
a polynomial improvement over the best generic classical scaling for all fracture systems considered here. This 
approach utilizes block encodings of �−1 and A−� to calculate the product �−1A . However, since ��−1� 
scales linearly in N, the block encoding takes at least this long. Future algorithms for QLS, specifically tailored to 
fracture systems, could be developed to calculate �−1A even more efficiently by exploiting the sparseness of A.

Discussion
In this work, we have initiated the study of using QLS algorithms to solve systems of equations describing sub-
surface flow. As we argue in section “Fracture networks and coarse-graining”, capturing the full behavior of these 
systems at real-world scale is prohibitively memory-intensive for classical computers. Quantum computing pro-
vides an alternative path, potentially using significantly less resources and offering improved scaling in problem 
size. However, several conceptual problems must be addressed (in addition to the need for improved quantum 
computing hardware). The most prominent of these issues are the poor condition number of these systems and 
the means of loading information onto the quantum computer. Here we have studied the first problem through 
the use of quantum preconditioners, and we leave the latter problem to future work.

We have shown that two previously introduced quantum preconditioners, the circulant and SPAI methods, 
do not improve the scaling in N of κ(A) and therefore will not help gain a quantum advantage for these fracture 
systems. However, the inverse Laplacian is an effective preconditioner for fracture systems and readily admits 
a quantum implementation. In particular, it can be implemented via the fast-inverse QLS algorithm, and the 
overall scaling of this solver scales better than the best generic classical algorithm.

(2)O(��−1��A−���A−1�� log(�A−1��)/ǫ).

Figure 5.  Scaling of the components of the fast-inverse QLS algorithm for problems of increasing size for a 
fractal fracture network with high permeability contrast.

Table 1.  Scaling of the various components entering the overall scaling of the fast-inverse QLS using �−1 as 
the preconditioner. The Õverall scaling reported is modulo log(N).

Scaling in N of:

κ(A) ��−1
� �A−�� �A

−1�� Õverall Classical

Simple, low contrast 1 1.01 0 0.03 1.03 1.5

Simple, high contrast 1.02 1.01 0 0.26 1.26 1.51

Fractal, low contrast 1 1.01 0 0.11 1.11 1.5

Fractal, high contrast 1.09 1.01 0 0.34 1.34 1.54

Fractal, var. contrast 1.05 1.01 – 0.02 0.31 1.3 1.52
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In comparing against classical techniques, we have so far not addressed the fact that for PDE-based systems 
on a uniform mesh, such as those considered here, more specialized methods can be used. Geometric multigrid 
methods, which exploit the structured mesh, can solve systems of equations in O(N) or O(N logN)26. Due to the 
extensive caveats and stringent requirements attached to QLS algorithms, it is noteworthy (though by no means 
sufficient) that our preliminary results suggest that quantum performance will be at least comparable to state-
of-the-art, highly tuned classical techniques. This is in addition to the memory requirements which classical 
techniques inevitably hit. Still, it is clearly necessary to further refine QLS algorithms with an even greater eye 
towards the specific physics and mathematical structures of the fracture systems at hand.

An obvious area of improvement is a more efficient quantum means of implementing the preconditioned 
system �−1A . In the most realistic case we studied, the fractal system with variable contrast, κ(�−1A) asymptotes 
to roughly O(N0.55) . Therefore in principle the scaling of solving just the preconditioned system, e.g. with recent 
adiabatic QLS  algorithms18, would be O(N0.55 logN) , a significant improvement over the geometric multigrid 
methods.

Alternatively, while the inverse Laplacian opens the door for polynomial speed-up over classical, an even bet-
ter preconditioner is needed for exponential speed-up. For example, while a direct quantum port of the classical 
multigrid methods is not plausible, some of the ideas may be used to construct an analagous approach that can 
be implemented on a quantum computer. Reducing the condition number scaling to O(logN) in the quantum 
context would then be possible.

This study shows that fracture networks are a challenging real-world problem with a potential for serious 
advancements from quantum computation. The large linear systems necessary to accurately model flow behavior 
are sparse yet cannot be coarse-grained. The condition number κ of the systems tends to scale linearly with N, 
however the inverse Laplacian preconditioner, which readily admits a quantum implementation, can improve this 
scaling considerably, and it is likely evern further advancements can be made in κ . Future work will be devoted 
to incorporating our application-specific preconditioning techniques into a full quantum linear solver, ideally 
targeting an implementation on NISQ devices.

Methods
In this section we provide a more detailed review of the preconditioner methods evaluated in Section “Test of 
existing quantum preconditioners”, as well as a derivation of the scaling bound for the fast-inverse algorithm 
found in section “Algorithmic scaling with inverse Laplacian preconditioner”.

Circulant preconditioner. The circulant preconditioner method of Shao et al.20 gives an efficient quantum 
implementation of a circulant preconditioner C based on the quantum Fourier transform F. An n× n matrix 
C is circulant if Cij = C(i−j) mod n . The use of circulant preconditioners in classical applications is motivated 
by the fact that, for a given circulant matrix C and an arbitrary matrix A, CA and C−1A can be computed in 
O(n log n) steps using the fast Fourier transform. Circulant preconditioners are particularly useful in solving 
Toeplitz  systems27.

For an arbitrary matrix A, one can construct the circulant preconditioner via

where Fjk = 1√
n
ωjk with ω = e−2π i/n . C−1(A) is then used the preconditioner. F can be efficiently implemented 

via the quantum Fourier transform, and the middle term simplifies to

An algorithm for efficiently preparing the state in Eq. 4 is given  in20. This approach works for arbitrary dense 
non-Hermitian matrices, however there is no upper bound on κ(CA) , and in practice for random dense matrices 
κ(CA) = O(κ(A)).

Sparse approximate inverse. The Sparse Approximate Inverse (SPAI) approach for solving a system 
Ax = b attempts to find a matrix M such that MA ≈ I , where M has a (user-defined) sparsity pattern. For exam-
ple, if one gives a sparsity pattern involving n non-zero rows and d non-zero elements per row, then M is given 
by solving n× d independent least squares problems. The trick with this approach is determining which sparsity 
pattern to choose for M.

Clader et al.21 showed that the preconditioned system

can be solved via a slightly modified version of the HHL algorithm. The overall scaling for actually solving 
Eq. (5) with error ǫ is

In section “Test of existing quantum preconditioners” we adopt the relatively standard approach of using the 
sparsity pattern of A for M. One can also try other  methods23, which can significantly reduce the condition num-
ber, but again do not improve the scaling in N for the fracture systems studied here. Finally, d does not need to be 
a constant. As long as κ(MA) = O(1) , the sparsity pattern can scale with d ∝ N≤1/7 in order to at least recover 

(3)C(A) = F†diag(FAF†)F,

(4)diag(FAF†)k =
1

n

∑

p,q

ω(p−q)kAp,q.

(5)MAx = Mb

(6)Õ(d7κ(MA) log(N)/ǫ2).
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some quantum advantage. However, for the systems and sparsity patterns considered here, a small increase in 
d has a corresponding small decrease in κ(MA) . For example, when applying the technique described  in23 to 
the “simple” systems, i.e. fractal depth 1, increasing the density of M by a factor of five only decreases κ(MA) by 
a factor of two. It is therefore difficult to imagine a system size or sparsity pattern where such an incremental 
increase in d could produce sufficiently large reductions in κ(MA) as to make the procedure worthwhile.

Fast inverse. The fast inverse method of Tong et al.22 solves linear systems Ax = b where A can be decom-
posed as

where �Abig� ≫ �Asmall� . They then give a QLS algorithm which uses A−1
big as a preconditioner and solves the 

system (I + A−1
bigAsmall)x = A−1

bigb with scaling bounded by �Asmall�, �A−1
big�, and �A−1�.

This technique is dependent on efficient block-encodings of A−1
big and Asmall . An (α,m, ǫ)-block-encoding of 

the matrix A is given by the unitary UA:

where ∗ denotes arbitrary matrix blocks, α is a rescaling constant such that �UA� = 1 , and the error ǫ is bounded 
by �A− α(�0m| ⊗ In)UA(|Om� ⊗ In)� ≤ ǫ . Since the magnitude of α plays a critical role in the scaling of this 
algorithm, we note that �UA� = 1 implies that α ≥ �A�.

In order to use A−1
big as the preconditioner, Abig must be fast-invertible. A matrix M is fast-invertible matrix 

if one can efficiently prepare a (�(1),m, ǫ)-block-encoding U ′
M of M−1 . This requires access to an oracle for 

M−1 , and the number of queries to this oracle in preparing U ′
M must be independent of κ(M) . For example, if 

M is normal, and the eigenvalue decomposition M = VDV† gives a V that can be efficiently implemented in a 
quantum circuit and the elements of D can be accessed through an oracle, then M is fast-invertible.

The fast-inverse QLS algorithm takes as inputs an (αs ,ms, 0)-block-encoding Us of Asmall , and an (α′
b,m

′
b, 0)

-block-encoding U ′
b of A−1

big implemented via fast-inversion. They then use a modified version of the quantum 
singular value  transformation28 to construct a block encoding of (Abig + Asmall)

−1 with error ǫ in

applications of Us ,U
′
b along with their inverses, controlled versions, and other primitive gates. Here σ̃min is a lower 

bound for the smallest singular value of I + A−1
bigAsmall , i.e. the preconditioned system.

This approach has the benefit of providing an upper bound on the condition number of the preconditioned 
matrix, with the downside of needing a decomposition of A that matches a lengthy list of requirements. For 
fracture problems, we have the natural decomposition of

where the Laplacian � describes the flow in the absence of fractures, and AF denotes the fracture matrix. For-
tunately the discretized Laplacian is normal and has a known eigenvalue  decomposition24, therefore it meets 
the fast-invertible conditions and we may use it as the preconditioner. However, we have no guarantee that 
��� ≫ �A−�� , which is required to get good scaling. Still, we can numerically test the scaling of the algorithm 
to see how it performs in the absence of performance guarantees.

The parameters contributing to the performance of this algorithm, Eq. (9), are the block-encoding parameters 
α′
b and αs , along with a lower bound on the smallest singular value of the preconditioned system MA, σ̃min . In 

order to assess the potential usefulness of this algorithm for our application, we will explore the most optimistic 
values for these parameters. Due to minor technical details, we rescale the entire system by ��−1� , which gives 
Abig = ���−1� and α′

b (the block-encoding parameter for A−1
big ) = �(1) . We also have Asmall = (A−�)��−1� , 

so αs ≥ �A−����−1� , and 1/σ̃min ≥ �A−1�� . Therefore the overall scaling for the fast-inverse QLS algorithm 
is bounded below by

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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