
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22050  | https://doi.org/10.1038/s41598-022-26596-y

www.nature.com/scientificreports

Topological phase transitions 
without symmetry indication 
in NaZnSb

1−xBix
Jaemo Jeong 1, Dongwook Kim 2 & Youngkuk Kim 1*

We study topological phase transitions in tetragonal NaZnSb
1−xBix , driven by the chemical 

composition x. Notably, we examine mirror Chern numbers that change without symmetry indicators. 
First-principles calculations are performed to show that NaZnSb

1−xBix experiences consecutive 
topological phase transitions, diagnosed by the strong Z

2
 topological index ν

0
 and two mirror Chern 

numbers µx and µxy . As the chemical composition x increases, the topological invariants ( µxµxyν0 ) 
change from (000), (020), (220), to (111) at x = 0.15, 0.20, and 0.53, respectively. A simplified low-
energy effective model is developed to examine the mirror Chern number changes, highlighting 
the central role of spectator Dirac fermions in avoiding symmetry indicators. Our findings suggest 
that NaZnSb

1−xBix can be an exciting testbed for exploring the interplay between the topology and 
symmetry.

Since the discovery of archetypal topological insulators protected by time-reversal symmetry1,2, many topologi-
cal materials with potential applications have been discovered. According to the current topological materials 
databases3–5, out of the 24825 materials tested, 4321 are identified as topological (crystalline) insulators, and 
10007 are identified as topological semimetals. Along with topological materials, diverse topological phases have 
been discovered, enriched by diverse symmetries such as translation6–9, inversion10–14, mirror15, rotation16–19, 
or glide mirror20–23, and with or without time-reversal symmetry18,24–28. Topological phases are also classified 
based on their order29–32, fragility33, delicacy34, obstructed35–37, and noncompact38 atomic insulators. They are 
applicable with outstanding results in various apparatuses, such as chemical39,40, electronic27,41–44, spintronic45–49, 
and quantum computer devices50–53.

The remarkable developments in topological band theory could be one of the fundamental reasons for the suc-
cess in finding topological materials and phases54,55. Moreover, topological quantum chemistry, or equivalently, 
the symmetry-based indicator method3,56,57, has enabled efficient and high-throughput searches for topological 
materials. The symmetry indicator significantly simplifies the problem of identifying topological states for a given 
set of materials. Combined with the first-principles calculations based on density functional theory (DFT), band 
representations at high-symmetry momenta can efficiently indicate nontrivial band topology. Seemingly distinct 
topological phases are interconnected via symmetries of materials. Thus, inspecting the protecting symmetry has 
provided insights into determining the topological phases that share the protecting symmetries56,58,59.

Symmetry indicators are a robust scheme, but their limitations are apparent. Notably, they fail for a specific set 
of topological phases, referred to as fragile topological phases33,60, which have been a subject of intense study61–65. 
Moreover, the symmetry indicators intrinsically have a one-to-many nature66. Multiple stable topological phases 
exist for the same trivial indicator. Thus, the Berry phases and Wilson-loop calculations should be employed 
to determine the stable topological phase. This one-to-many nature allows for a disjointed distinction between 
the topological phase transitions with and without symmetry indicators. In this study, we examine a class of 
topological phase transitions that cannot be found in the symmetry indicators. These symmetry-uncaught topo-
logical phase transitions can occur because of the lack of symmetry to discern the topological phase transition 
in terms of symmetry representation67,68. However, the detailed process of topological phase transitions to avoid 
symmetry indication remains unexplored.

In this paper, we present a case study of a stable topological phase transition that occurs without symmetry 
indications. We perform first-principles calculations to study the topological phase transitions of NaZnSb1−xBix 
in the presence of time-reversal symmetry driven by the chemical composition x, diagnosed by two mirror Chern 
numbers µx and µxy and the strong Z2 topological index ν0 . (µxµxyν0) changes from (000), (020), (220), to (111) 
at x = 0.15, 0.20, and 0.53, respectively. Among these, the topological phase transitions from (000) to (020) and 
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from (020) to (220) occur within the same (trivial) symmetry indicators, thereby uncaught from the symmetry 
indicators. We build a simplified effective model to demonstrate a mirror Chern number change between the 
bands with the same symmetry representation, forbidding symmetry indication. We find that symmetry plays 
a role in the phase transition by providing a constraint on the positions of Dirac fermions and spectator Dirac 
fermions69–71 in momentum space.

Crystal structure and symmetries.  Figure 1a shows the crystal structure of NaZnX ( X = Bi, Sb) in the 
space group P4/nmm (#129). The system comprises Na-X staggered-square sublattices and Zn planar square 
sublattices, placed between the Na-X bilayers. The P4/nmm space group has three generators - two screw rota-
tions {C4z | 12

1
2 0} and {C2x| 12

1
2 0} and spatial inversion {P| 12

1
2 0} . C4z and C2x are fourfold and twofold rotations 

about the z-axis and x-axis, respectively (Fig. 1a), and { g | 12
1
2 0} ( g = C4z ,C2x , or P ) is a symmetry operator g 

followed by a fractional translation by half of the primitive unit vectors along the x - and y-directions. Notably, 
there exist x-mirror Mx and xy-glide Gxy = {Mxy| 12

1
2 0} , which will be employed to evaluate the mirror Chern 

numbers µx and µxy , respectively. In addition, the system preserves time-reversal symmetry T  , enabling the Z2 
topological insulator phase. The first Brillouin zone and the corresponding high-symmetry momenta are shown 
in Fig. 1b. Moreover, NaZnSb is an existing material72–75, whereas NaZnBi is yet to be synthesized.

DFT bands.  Figure 2 shows the first-principles electronic energy bands of NaZnSb1−xBix calculated for vari-
ous chemical compositions x using virtual crystal approximation76,77. A close inspection reveals that a direct 
bandgap exists throughout the BZ for any x ∈ [0, 1] except for the cases where x = 0.15 , x = 0.20 , and x = 0.53 . 
In these fine-tuned compositions, the bandgap between the conduction and valence bands vanishes such that 
it can form a fourfold-degenerate band crossing with linear dispersion, which is dubbed by the Dirac point. 
Specifically, for the case where x = 0.15 and x = 0.20 , the Dirac point appears on the Ŵ − X and Ŵ −M lines, 
respectively, contained in the Mx ( Gxy ) invariant kx = 0 ( kx = −ky ) plane. However, for x = 0.53 , the Dirac 
point appears at the time-reversal invariant Ŵ point and mediates the band inversion between the Ŵ+

6  and Ŵ−
6  

states, as shown in Fig. 2c. The Ŵ+
6  and Ŵ−

6  states mainly comprise the Zn s and Sb1−xBix px and py orbitals, 
respectively, as shown in Fig. 2d For any x ∈ [0, 1] other than these critical values, the conduction and valence 
bands are well separated by a direct bandgap, enabling the evaluation of the topological insulating phase from 
the occupied bands.

Topological phases.  The Dirac points accompany a topological phase transition. Using the Wilson loop 
calculations18,79,80, we enumerate two mirror Chern numbers µx and µxy associated with the Mx-mirror and Gxy

-glide on the corresponding invariant planes at kx = 0 and kx = −ky , respectively. (See Supplementary Informa-
tion for the detailed calculations of the mirror Chern numbers). In addition, the three-dimensional strong Z2 
topological invariant ν0 is calculated using the parity eigenvalues of the occupied bands at eight time-reversal 
invariant momenta12. As summarized in the bottom panel of Fig. 2c, we identify the topological phases charac-
terized by ( µx ,µxy , ν0 ) = (0,0,0) for 0 ≤ x < 0.15 , (2,0,0) for 0.15 < x < 0.20 , (2,2,0) for 0.20 < x < 0.53 , and 
(1,1,1) for 0.53 < x ≤ 1 . We note that the calculated Z2 indices for x = 1 are in good agreement with the previ-
ous result81. Correspondingly, topological phase transitions at x = 0.15 , x = 0.20 , and x = 0.53 occur owing to 
the changes in the mirror Chern numbers µx and µxy and the strong Z2 topological index, respectively.

For completeness, we evaluate the other possible topological crystalline phases allowed in NaZnSb1−xBix . 
First, the three-dimensional weak topological insulator phases, characterized by the three weak Z2 indices 
(ν1ν2ν3) , are turned out to be all trivial (ν1ν2ν3) = (0, 0, 0) for all gapped phase. In addition, the Z4 index asso-
ciated with PT  symmetry82, denoted by ν4 is calculated as identical to the Z2 index ν0 . Thus, ν4 = 0 for x < 0.53 
and ν4 = 1 for x > 0.53 . Finally, the remaining topological indices are listed in Table 1. Despite the variety, the 
whole topological crystalline insulator phases are unambiguously determined by the weak indices and the Z4 
index (ν1, ν2ν3ν4) along with the two mirror Chern numbers µx and µxy

66. The mirror Chern number µz is 
associated with the glide gz = {Mz | 12

1
2 0} symmetry. The gz-invariant plane kz = 0 hosts four Dirac points at 
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Figure 1.   (a) Crystal structure of matlockite-type NaZnX (X = Sb and Bi) in space group P4/nmm (# 129). Na, 
Zn, and X atoms are colored by white, grey, and black, respectively. The unit cell is represented by a solid (black) 
box. (b) Corresponding tetragonal first Brillouin zone. High-symmetry momenta are colored red.
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the critical composition x = 0.15 and x = 0.20 . The mirror Chern number remains trivial, µz = 0 for x < 0.53 , 
which is consistent with the symmetry constraint dictated by ν4 = 066.

Topological surface states.  The nontrivial topology found in NaZnSb1−xBix for x > 0.15 is demonstrated 
by explicit calculations of topological surface states. We prepared a slab geometry of NaZnSb1−xBix comprising 
15 unit cells along the [001]-direction with open boundary conditions imposed on the (001) surface. Figure 3 
shows the computed surface states for (a) x = 0.31 and (b) x = 1.00, where (µxµxyν0) = (2, 2, 0) and (1,1,1), 
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Figure 2.   (a) First-principles bands of NaZnSb (x = 0) with spin-orbit coupling. The red rectangles are 
magnified in the guided grey boxes, showing a direct bandgap. (b) DFT bands of NaZnBi (x = 1). (c) DFT bands 
of NaZnSb1−xBix for various x and topological phase diagram in x-space. The bands are drawn near the Ŵ point 
along with the X and M directions, with the corresponding chemical composition x being indicated in the 
topological phase diagram. The red circles in the bands highlight the massless (zero-gap) Dirac points, which 
appear at the topological phase boundaries. Domains in different colors indicate distinct topological phases. (d) 
Schematic diagram of the orbital characters at Ŵ as a function of x. The Zn-s and Sb1−xBix-px and py orbitals are 
inverted at x = 0.53, responsible for the change of the strong Z2 index.
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respectively. When x = 0.31, the two surface Dirac points occur because of µx = 2 and µxy = 2 along the high-
symmetry Ŵ − X and Ŵ −M lines of the surface BZ, respectively, where the nontrivial mirror planes are pro-
jected (Fig. 3a). For the case of x = 1.00 , on the other hand, the strong topological insulator phase is hosted 
( ν0 = 1 ), leading to the formation of a two-dimensional surface Dirac point occurring at the surface Ŵ point 
(Fig. 3b). The calculated surface spectra agree well with the topological phases diagnosed from the bulk topo-
logical invariants.

Symmetry indicators.  After identifying the topological phases of NaZnSb1−xBix , we directly evaluate the 
symmetry indicators, and show that the symmetry indicators proposed in this space group fail to capture the 
topological phase transitions at x = 0.15 and x = 20 . According to Ref.66, NaZnSb1−xBix in space group #129 
contains a set of 3Z2 × Z4 symmetry indicators (ν1ν2ν3ν4) . As introduced earlier, the first three indices νi=1,2,3 
are the three-dimensional weak Z2 topological indices, evaluated from the parity eigenvalues of the occupied 
bands12 and the last index ν4 is the PT  symmetric topological invariant, evaluated from ν4 ≡

∑

Ŵi∈TRIM
n−Ŵi−n+Ŵi

2  
(mod 4), where n+(−)

Ŵi
 is the number of even- (odd-) parity valence bands at a time-reversal invariant momen-

tum Ŵi
82. From the first-principles calculations of symmetry representations, we obtain the symmetry indicators 

(ν1ν2ν3ν4) = (0000) for x < 0.53 and (0001) for x > 0.53 . Thus, the change in the strong index at x = 0.53 is 
captured by the symmetry indicators, but those at x = 0.15 and x = 0.20 are unseen. The absence of a sym-
metry indication can be attributed to the symmetry representations of the bands. Because the topological phase 
changes via the formation of the Dirac points that reside off the high-symmetry momenta, the symmetry repre-
sentations of the bands remain the same immediately before and after the Dirac point. Therefore, the failure of 
the symmetry indicators is inevitable, as evaluated from the symmetry representations.

We explain the failure of symmetry indicators as being due to the so-called symmetry-allowed nature of the 
Chern numbers. Unlike the symmetry-protected topological phases, the Chern number characterizes a so-called 
symmetry-forbidden phase, in which symmetries play a role in giving rise to a constraint instead of protection. As 
shown by Song et al.66, there are four varieties for a given symmetry indicator in space group #129 (See Table 1). 
The varieties arise from the two possibilities of the two mirror Chern numbers, that is, µi = 0, 2 for i = x, xy . 
which are under the symmetry constraints for the two-fold C2i rotation17

where θn(Ŵa) = ei(2J
a
n+F)π/2 , Jan is an eigenvalue of the C2i rotation for the n-th occupied band at a rotation-

invariant momenta (RIM) Ŵa contained in the mirror-invariant plane, and F = 1(0) for a spinful (spinless) 
system. Therefore, the Chern number can be changed by determining �C from

(1)eiπµi =
∏

n∈occ.
(−1)F

∏

Ŵa∈RIM
θn(Ŵa),
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Figure 3.   (001) surface energy spectra of NaZnSb1−xBix at (a) x = 0.31 and (b) x = 1.00. The discrete energy 
spectra calculated from a slab geometry are overlapped with the continuous grey bulk projected spectra. 
The strength of the surface projection is indicated in red; the more substantial the red color, the stronger the 
localization at the surface. The right panels show the magnified views of the boxed regions in the left panels. The 
band crossing (anticrossing) is shown in the magnified views for the case of x = 0.31 (x=1.00).
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or equivalently,

when the Jan remains the same before and after the variations in Chern number. Thus, µi = 0 and µi = 2 are 
symmetry-allowed, enabling the varieties of topological phases under the same symmetry structure.

Mirror‑specific four‑band model.  We further resolve the role of symmetry in the change in mirror Chern 
numbers by constructing an effective Hamiltonian. Let us begin with a generic 4× 4 Hamiltonian

where τx,y,z and σx,y,z are the Pauli matrices describing the orbitals and spins, respectively. The D2h point-group 
symmetries are distilled from the DFT bands responsible for the mirror Chern number change (See Supplemen-
tary Information for the detailed derivation of the effective model). This leads to the symmetry representations: 
T = iσzK , Mx,y,z = iσx,y,z , and P = I4×4 . Here, K is the complex conjugation. Under the symmetry constraints

where Ug and Ôg are the representation for the symmetry operator g in matrix and momentum spaces, respec-
tively, the effective Hamiltonian on the mirror-invariant plane kz = 0 is obtained as

where A(kx , ky) ≡ a0 + a1k
2
x + a2k

2
y , B(kx , ky) ≡ b0 + b1k

2
x + b2k

2
y , and C(kx , ky) ≡ c2kxky to the quadratic order 

in k = (kx , ky) . The corresponding energy bands are given by

for each mirror-sector σz = ±1 . The parameters ai , bi , and c2 (i = 0, 1,and 2) can be fine-tuned to critical 
points, where A = B = C = 0 . These conditions lead to a bandgap crossing E+ = E− at k = (±√−a0/a1, 0) or 
k = (0,±√−a0/a2) (We note that c2 = 0 can also close band gap, but the mirror Chern number remains the 
same via the gap closer. See the Supplemental Information for the detailed calculations.)

The Chern number that characterizes the occupied bands E−(k) for each mirror-sectors Mz = ±i is deter-
mined by

from which the mirror Chern number µz
15,16 can be obtained as

The nontrivial (trivial) topological crystalline phase indexed by µz = 2 (=0) occurs when 
(a0b2 − a2b0)(a0b1 − a1b0) < 0(> 0) . This equation directly shows that the bandgap crossings define the topo-
logical phase transitions between µz = 2 and µz = 0.

As illustrated in Fig. 4, the results of the effective model provide essential insight into the role of symmetries. 
The n-fold rotational symmetry generates n symmetry-related Dirac fermions whose mass is flipped simulta-
neously during the phase transition. This leads to variations in the Chern number with n. We believe that the 
fraction of n can only be changed when the symmetry is implicitly broken at the representation level, which can 
be deduced from the symmetry indicators. It is interesting to note the role of the spectator Dirac fermions69,69–71, 
which refers to the massive Dirac fermions without mass inversion during the transition. Upon restoring a 

(2)eiπ�C = 1,

(3)�C = 0 (mod 2)

(4)H(k) =
∑

i,j=x,y,z

hij(k)τiσj ,

(5)H(Ôgk) = U†
gH(q)Ug ,

(6)H(k) = A(kx , ky)τx + B(kx , ky)τz + C(kx , ky)τyσz ,

(7)E±(k) = ±
√

A(kx , ky)2 + B(kx , ky)2 + C(kx , ky)2,

(8)C±i = ±
{

sgn

[

c2

(

a0

a1
− b0

b1

)]

− sgn

[

c2

(

a0

a2
− b0

b2

)]}

,

(9)µz ≡
1

2
(C+i − C−i) = sgn

[

c2

(

a0

b0
− a2

b2

)]

− sgn

[

c2

(

a0

b0
− a1

b1

)]

.

Table 1.   Possible topological crystalline phases corresponding to the trivial 3Z2 × Z4 symmetry indicators 
( ν1ν2ν3ν4 ) = (0,0,0,0) in space group #129. µi and gi and ci , and si are the mirror and glide and rotation and 
screw-resolved topological invariants about the i-invariant plane and the i-axis, respectively ( i = x, xy, · · · ). We 
have applied the results of Ref.66.

Space group #129 : P4/nmm

Z2,2,2,4 µx,0(π) µxy gz gxy c2z c2xy c4z s2x

0000 0 (0) 0 0 0 0 0 0 0

0000 2 (0) 0 0 0 0 0 1 1

0000 0 (0) 2 0 1 0 1 1 0

0000 2 (0) 2 0 1 0 1 0 1
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higher-rotational symmetry, such as C4z , the topological phase transition becomes trivialized by enforcing the 
participation of the spectator Dirac fermions. In our case, the C4z-symmetry enforces a1 = a2 and b1 = b2 , 
and thus, all the massive Dirac fermions invert the mass simultaneously to nullify the mirror Chern number 
change. This conforms to the symmetry constraint given by C4z to the mirror Chern number. It can only change 
integers that are multiples of four, forbidding two. We believe that this occurs in NaZnSb1−xBix at x = 0.15 and 
x = 0.20 , where four Dirac points occur on the Gz-invariant kz = 0 plane without changing the mirror Chern 
number µz = 0.

Conclusions
We have performed a first-principles study on the topological phases of NaZnSb1−xBix driven by the chemi-
cal composition x. We have established the topological phase diagram in x-space using symmetry indicators, 
two mirror Chern numbers, and the Z2 strong topological index. The phase boundaries are determined to be 
x=0.17, 0.20, and 0.53. We focused on analyzing the first two topological phase transitions, which changed the 
mirror Chern numbers without symmetry indications. The absence of a symmetry indication is attributed to 
the intrinsic nature of the Chern numbers. In general, the Chern number can jump by a factor of n without 
being caught by the Cn-symmetry, which can be fulfilled by hosting n massless Dirac fermions that mediate the 
change in the Chern number.

Our results are scientifically innovative in three aspects. First, the study provides insights into topological 
phase transitions, uncovering the close interplay between symmetry and topology. Second, we highlight the one-
to-many nature of symmetry indicators, suggesting that materials identified as trivial in topology via symmetry 
inputs can be nontrivial. This may provide opportunities for finding topological materials. Finally, NaZnSb1−xBix 

(b)

(d)

(c)

(a)

Figure 4.   Schematic phase diagrams for a topological crystalline phase transition diagnosed by mirror Chern 
number µz . (a) Systems with C4z . The Dirac and spectator Dirac points that close the band gap simultaneously 
at m = m1 = m2 result in the same topological crystalline phases with the mirror Chern number CM = 0 . (b) 
Systems without C4z . The Dirac and spectator Dirac points that close the band gap independently at m = m1 
and m = m2 �= m1 can mediate a topological phase transition from µz = 0 to µz = 2 . (c–d) Mass inversion of 
Dirac fermions in the mirror-invariant plane of momentum space: (c) with C4z and (d) without C4z . The red and 
blue circles represent the massive Dirac and the massive spectator Dirac fermions, respectively. The grey circles 
indicate the massless Dirac fermions.
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in the tetragonal phase is such an archetypal example that suggests a rich playground for exploring topological 
phenomena. For example, we believe that the Fermi surface topology as a function of doping concentration and 
chemical potential will be an interesting future study in the NaZnSb1−xBix systems.

Methods
We performed first-principles calculations based on density functional theory (DFT) as implemented in Quan-
tum Espresso package83. We used the Perdew-Burke-Ernzerhof (PBE) type general gradient approximation 
for exchange-correlation functional84. The Opium package is used to construct norm-conserving, optimized, 
designed non-local, and fully-relativistic pseudopotentials for the Na, Zn, Bi, and Zn atoms85,86. The atomic 
structures are fully relaxed within the force criterion of 10−7 eV/Å. The wave functions are expanded on a plane-
wave basis with an energy cutoff of 680 eV. The atomic structures are fully relaxed within the force threshold 
of 10−5 eV/Å. The 8 ×8× 8 sampling of the k-point grid is used based on the Monhorst-Pack scheme87. We have 
tested that this k-point grid is dense enough to achieve the self-consistent charge density and total energy conver-
gence. Atomic substitution from Sb to Bi as a function of chemical composition x is mimicked by virtual crystal 
approximation76,77. The lattice parameters of the tetragonal unit cell are calculated as a = 4.39 Å, c = 7.36 Å for the 
case of X = Sb and a = 4.54 Å, c = 7.55 Å for the case of X = Bi. The unitcell comprises two formula units with six 
atoms Na1, Na2, Zn1, Zn2, X1, and X2 located at (0.25a, 0.25a, 0.16c), (0.75a, 0.75a, 0.84c), (0.75a, 0.25a, 0.5c), 
(0.25a, 0.75a, 0.5c), (0.75a, 0.75a, 0.27c), and (0.25a, 0.25a, 0.73c), respectively. The mirror Chern numbers15,16 
were calculated using the mirror-specified Wilson loop calculations18,78–80. The Wilson Hamiltonians are gener-
ated by the Soluyanov and Vanderbilt method88, using the Pw2wan utility in Wannier90 code89–93.

Data availability
The datasets generated from the current study are available from the corresponding author upon reasonable 
request.
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