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Seasonal to multi-year soil moisture drought forecasting
Musa Esit1,2, Sanjiv Kumar 1✉, Ashutosh Pandey3, David M. Lawrence 4, Imtiaz Rangwala5,6 and Stephen Yeager 4

Soil moisture predictability on seasonal to decadal (S2D) continuum timescales over North America is examined from the
Community Earth System Modeling (CESM) experiments. The effects of ocean and land initializations are disentangled using two
large ensemble datasets—initialized and uninitialized experiments from the CESM. We find that soil moisture has significant
predictability on S2D timescales despite limited predictability in precipitation. On sub-seasonal to seasonal timescales, precipitation
variability is an order of magnitude greater than soil moisture, suggesting land surface processes, including soil moisture memory,
reemergence, land–atmosphere interactions, transform a less predictable precipitation signal into a more predictable soil moisture
signal.
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INTRODUCTION
Drought is a complex, multifaceted phenomenon involving
climate, water resources, and socioeconomic drivers and
impacts1–4. It causes billions of dollars in economic losses and
severe stress on ecosystem productivity5–7. While significant
efforts are underway to develop drought monitoring and
forecasting systems, the ability to forecast drought is limited
due to inherent uncertainties in precipitation forecasts at long
lead times (months to years)8–14. For example, the NOAA’s
Seasonal Climate Outlook did not predict the 2012 agricultural
drought (also commonly referred to as soil moisture drought) in
the central US which resulted in $30 billion economic losses15,16.
In this study, we assess the initialized16 and uninitialized5 large
ensemble experiments of the Community Earth System Model
(CESM) for North America and show that recent advances in earth
system modeling17 combined with an improved understanding of
long-memory land surface processes18,19 can enable skillful
predictions of soil moisture drought several months in advance
(Fig. 1) despite limited skills in the precipitation forecast.
The soil moisture variability represents an integrated effect of

climate, vegetation, and soil processes. The Community Land Model
(CLM)20,21, which is the land component of the CESM, simulates a
range of biophysical and biogeochemical processes, including land
surface heterogeneity, radiation scheme, momentum, energy
balance, hydrology, photosynthesis, stomatal conductance, and
prognostic vegetation phenology22,23. The CLM simulates soil
moisture variability with high fidelity at par with the observationally
constrained remote-sensing estimates (Supplementary Fig. 1).
Previous studies have compared soil moisture variability with various
drought metrics and found the soil moisture metric’s superiority for
agricultural drought applications24,25. The soil moisture variability is
correlated significantly with the Palmer Drought Severity Index in the
CESM experiment (Supplementary Fig. 2).
The slowly varying ocean anomalies, e.g., El Niño-Southern

Oscillation (ENSO)12,13, Atlantic Multi-decadal Variability26,27, and
Pacific Decadal Variability (PDV)28–31 affect land hydroclimate at
seasonal to decadal (S2D) timescales through atmospheric
teleconnection processes32. Multi-season to multi-year memory
from deep soil moisture and groundwater may also contribute to

S2D predictability of hydroclimate features such as drought33–37,
pluvials31, and wildfire38. External climate forcing from green-
house gas emissions and anthropogenic aerosol emissions can
provide predictability on multi-year timescales32,39.
We quantify and disentangle the effects of ocean and land

initializations on S2D hydroclimate predictability, and demon-
strate that land surface processes (i.e., soil moisture memory,
reemergence, and land–atmosphere interactions) can contribute
to the improvement of forecast skills on S2D timescales by
transforming a weak precipitation signal into a predictable soil
moisture signal. This finding is an advancement compared with
the previous studies that have documented soil moisture as a
source of predictability on sub-seasonal to seasonal timescales,
only32,40. We also develop an observational constraint on the
predictability estimates that can motivate future development of
S2D prediction systems. Finally, we aim to bring fundamental
advances by (a) developing the predictability estimates on the
S2D timescale continuum instead of multi-year only41,42 or
seasonal only timescale43 and (b) assessing hydroclimate predict-
ability in the mid-latitude regions where the signal to noise ratio is
known to be smaller than in equatorial regions12,44 and therefore
where predicting drought is more challenging13.
The CESM Decadal Prediction Large Ensemble (CESM-DPLE) uses

observation equivalent ocean and sea ice states derived from the
forced ocean–sea ice (FOSI) simulations45,46, and land condition from
a selected realization of the Large Ensemble simulation9 for the
given time to initialize S2D earth system prediction47 (Table 1). Each
initialization consists of a 40-member ensemble forecast generated
by randomly perturbing the initial atmospheric condition, and each
forecast is integrated for 10 years. In contrast, the CESM Large
Ensemble (CESM-LE)9 is a fully coupled 40-member ensemble
climate simulations where neither the ocean initial states nor the
land initial states are constrained at the start of each forecast period.
Additionally, the CESM-LE allows disentangling the effect of land
initialization by contrasting the effect of the initialized land
anomalies with the remaining 39 ensembles not used for
initializations (Table 1). Hence, CESM-DPLE and its uninitialized
parallel CESM-LE provide a rich dataset to estimate the potential of
drought predictability on the S2D timescales.
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PREDICTABILITY OF SOIL MOISTURE ON THE S2D TIMESCALES
Our analysis demonstrates that soil moisture predictability is much
higher and spatially extensive than for precipitation on S2D
timescales. Figure 2 compares the root zone (0–0.5 m) soil
moisture predictability with the precipitation over North America
for 36 initialization dates (1980, 1981, …., 2015). We use a recent
period (1980–2015) in our analysis because of the significant trend
in the longer period (1955–2015) (not shown). We employ a signal
to noise ratio metric that compares the variance of the ensemble
average forecast (signal) to that of the ensemble spread (noise) to
determine the effects of the initializations48 (see the “Methods”
section). This is a measure of the potential predictability (referred
to as predictability hereafter) in the perfect model world. Actual
realized forecast skill is likely to be lower than the predictability
due to model biases and uncertain initial conditions43,49.
The spatial extent of the statistically significant signal is three

times greater for soil moisture than for precipitation. Averaged
over year 1–10 forecasts, 51% of the North American land area
shows a statistically significant soil moisture predictability than
18.5% area for the precipitation. The DPLE soil moisture

predictability is about four times higher than the soil moisture
persistence model forecast (Supplementary Fig. 3). Furthermore,
there is predictability for soil moisture beyond the timescale of the
precipitation predictability. For example, there is almost minimal
area of predictability beyond year 5 for precipitation, whereas
there is predictability seen beyond year 5 in soil moisture in about
36% of land area that includes many areas in Western North
America, which has a history of the mega-drought50. A cyclic
behavior in the forecast skill (Fig. 2c) can be due to differences in
skill across the annual cycle43 because of the Nov1 initialization
date (Supplementary Fig. 4).
Spring (MAM) has the highest soil moisture predictability (55%)

averaged over the 10 years of the forecast, while fall (SON) has the
lowest predictability (39%). Soil moisture predictability for winter
(DJF) and summer (JJA) are 50% and 53%, respectively (Fig. 3). A
previous study18 has found soil moisture anomalies reemergence
in the root zone from deeper soil layer anomalies stored in the
preceding seasons. A stronger land–atmosphere coupling in
spring and summer can enhance the predictability due to
memory stored in the land surface51. As expected, soil moisture
predictability decreases with increasing lead times52, but it
remains considerably higher than precipitation throughout the
forecast period (Fig. 2). The majority of the land area (68% of North
America) shows significant forecast skill for soil moisture by the
end of year-2, and decreasing to 37% land area by year 10.
External climate forcing, e.g., greenhouse gas emissions,

contribute to a signal in the decadal prediction32, i.e., the global
warming trend is a part of the signal. Hence, we did not remove
the trend from our predictability analysis. However, a global
warming trend can also counteract the effects of the initialization.
For example, a forecast initialized during the positive phase of the
PDV would often exhibit a wetting signal in the US southwest53

that can be muted at long lead times by the gradual soil moisture
drying due to the global warming trend4. A removal of trend
slightly improves the predictability at longer lead-time, particularly
for soil moisture with an accentuated annual cycle in years 7–10
(Supplementary Fig. 5).
Land initialization can bring considerable improvements in S2D

soil moisture forecasts. To disentangle the effects of land
initialization, we computed the anomaly correlations between
initial condition total soil moisture anomaly (past 12 months
average before November 1) and the ensemble average forecast
anomalies for the 36 initialization date (1980–2015) (Fig. 3). We
compared it with the remaining 39 LE ensembles’ anomaly
correlations that were not used to initialize the DPLE land
condition (thin gray line in Fig. 3). If the spatial extent of
significant anomaly correlation with the initialized land anomalies
is greater than that for the remaining 39 ensembles, it
demonstrates a significant impact of land initialization on soil
moisture predictability. This methodology gives an improved
result than a previous method that assessed the effect of land
initialization by correlating the DPLE forecast anomalies with the
evolution of soil moisture in uninitialized LE#3454 (Supplementary
Fig. 6), where soil moisture anomalies evolved from a different SST
initial condition than the DPLE forecast.
Land initialization brings statistically significant improvement in

predictability for lead times exceeding one year in three out of
four seasons, i.e., effects of initialized soil moisture anomalies are
significantly higher than the remaining 39 ensembles not used in
initializations (Fig. 3). For DJF, the impact of land initialization
extends out to 7 years. This is a noteworthy result in at least two
respects: (1) previous studies have reported improved predict-
ability due to soil moisture and/or land initialization is generally
limited to sub-seasonal to seasonal timescales32,52. Our results
show that land initialization can bring improvement in predict-
ability for multiple years. (2) CESM-DPLE uses a synthetic land
initialization taken from a selected ensemble of the uninitialized
experiment (Table 1). We are not aware of any observationally

Fig. 1 Skillful prediction of the 2012 soil moisture drought in the
California–Nevada region (30°–37° north latitudes and 110°–120°
west longitudes). The CESM-DPLE drought forecast, initialized in
November 2011, and the uninitialized CESM-LE forecast are
compared with two observation equivalent data (CLM and GLEAM).
The thin lines show anomalies from individual ensemble members,
and the thick lines show ensemble mean.

Table 1. List of climate experiments employed to investigate S2D
hydroclimate predictability.

Ex. type Experiment name and design details Reference

Initialized CESM-DPLE Yeager et al.47

Ocean IC—from FOSI

Land IC—from CESM-LE # 34

Atmosphere IC—perturbed

Ensemble size: 40

Initialization date: Nov. 1 of 1980, 1981,
…., 2015

Uninitialized CESM-LE Kay et al.9

Internally generated weather/climate
variability under historical climate
forcing

ICs—N/A
Ensemble size: 40

Observation
equivalent

CLM4—with GSWP3 meteorological
forcing

Lawrence et al.20,21

GLEAM—remote sensing-based soil
moisture data

Marten et al.69

CESM-DPLE Community Earth System Model-Decadal Prediction-Large
Ensemble, IC initial condition, FOSI forced ocean–sea ice simulation,
CESM-LE Community Earth System Model-Large Ensemble, CESM-LE #34
Ensemble member number 34, N/A not applicable, CLM4 Community Land
Model version 4, GLEM Global Land Evaporation Amsterdam Model, GSWP3
Global Soil Wetness Project Phase 3.
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constrained land initialization technique conceptually similar to
FOSI simulations45,46 for the ocean. We hope that our results
provide the necessary motivation for developing the observation-
ally constrained land initialization technique.
Why is soil moisture more predictable? We compared the

predictability of soil moisture and precipitation averaged over the
annual timescale. The areal extent of predictability is similar
between soil moisture and precipitation when averaged annually
(Fig. 4). Significant predictability is found for most of the North
American land areas (>50%) from year 1 to year 10, both for
precipitation and soil moisture, but not always co-located
particularly at the longer lead time, e.g., lead 10-year suggesting
different climate processes contributing to the predictability. Since

the low-frequency (inter-annual) precipitation variability compo-
nent is smaller (7%) compared with the sub-seasonal (43%) and
seasonal (42%) variability components in North America (Supple-
mentary Fig. 7); annually averaged precipitation predictability
does not contribute to improving sub-seasonal to seasonal
precipitation predictability (e.g., Fig. 2). Also, the magnitude of
the signal strength is weaker for precipitation than soil moisture in
years 1 and 2 (Fig. 4, and Supplementary Fig. 8).
The sub-seasonal to seasonal variability in precipitation is an

order of magnitude higher than the soil moisture variability
(Fig. 5), i.e., a highly variable sub-seasonal to seasonal
precipitation is less predictable in the DPLE experiment.
However, the soil moisture memory, reemergence, and

Fig. 2 The S2D predictability of (a) root zone (0–0.5m) soil moisture and its comparison with the (b) precipitation predictability in the
CESM-DPLE, and using signal to (signal+ noise) ratio metric. Stippling shows statistical significance at a 95% confidence level. The bottom
panel (c) shows areas of the significant predictability for soil moisture and precipitation in North America.
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land–atmosphere interactions processes can boost the signal
strengths18,55,56 and contribute to a much higher predictability
for soil moisture on those timescales. For example, soil moisture
variability is smaller (22% in CLM and 7% in GLEAM) at sub-
seasonal timescale despite a higher precipitation variability at
sub-seasonal scale (43%). In contrast, inter-annual soil moisture
variability is higher (16% in CLM, and 29% in GLEAM) than inter-
annual precipitation variability (7%) (Supplementary Fig. 7),
suggesting contribution from the memory effect55,56.
The soil moisture forecast skill seen in Figs 1–4 should be

considered conservative estimates of the predictability compared
to the observational estimates shown in Fig. 6. The CESM exhibits
weak soil moisture to the precipitation feedback loop. The CESM-
DPLE precipitation forecasts do not show significant improve-
ments due to soil moisture initialization, i.e., the anomaly
correlation between initial soil moisture anomalies and ensemble
average precipitation forecast anomalies in DPLE are not
statistically distinguishable from the anomaly correlations
between the remaining 39 ensemble initial soil moisture
anomalies and the precipitation forecasts (Supplementary Fig. 9).
Since the CESM-DPLE has retrospective forecasts, it provides an
opportunity to test those forecasts against observations.
We compare the anomaly correlations for CLM’s soil moisture

and precipitation, which are considered here as a proxy for

observations, with that of the CESM-DPLE forecasts (Fig. 6). We
find that the anomaly correlations between CLM initial condition
soil moisture and the succeeding observed precipitation are
considerably higher than those for the DPLE forecast during the
first year (Fig. 6a). For example, the observations show statistically
significant correlations for 30% land area during the first 6 months,
whereas the DPLE does not show a significant anomaly
correlation. This analysis suggests that weaker feedbacks between
antecedent soil moisture and precipitation57 contribute to smaller
improvements to soil moisture predictability due to land
initialization effects in the DPLE (Fig. 6b).

PERSPECTIVE ON SEASONAL TO MULTI-YEAR DROUGHT
FORECASTING
Predictability of drought based primarily on precipitation forecast
has low skill, particularly in the mid-latitudes10,12,13,58 to effectively
support drought early warning and response. Land surface
integrates the stochastic tendency of weather at longer timescales
within the memory of the deep soil layers18,33, and
land–atmosphere coupling effects by decreasing the humidity
gradient between land and atmosphere, and therefore increasing
the soil moisture memory55,59. The new soil moisture predictability
analysis presented here suggests that opportunities may exist to

Fig. 3 Comparison of the total soil moisture predictability area in North America due to ocean and land initialization effects (Ocean+
Land) with that due to land-only initialization effect (Land). Thin gray lines show the expected statistical distribution if the land-only were
not initialized. We determined the land-only effects by computing the anomaly correlations between initialized total soil moisture anomalies
and the ensemble average forecast anomalies for the root zone soil moisture. Thin gray lines are obtained by correlating the uninitialized soil
moisture initial condition (remaining 39 LE initial conditions) with the ensemble average DPLE forecast.
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develop skillful drought prediction systems focused on soil state,
which would be highly relevant for agricultural drought
predictions24,25.
Land initialization contributes to approximately a third of total

soil moisture predictability, with the remainder arising from ocean
conditions (Fig. 3). Previous studies have made considerable
efforts to develop observationally constrained ocean initializa-
tions, e.g., FOSI simulations45,46. This study’s results imply that a
similar effort to develop observationally constrained land-initial
conditions could be beneficial. The recent availability of multi-
scale multi-source soil moisture data, including in situ60,61 and
remote-sensing measurements62,63, may provide an opportunity
to develop the land initializations.
Why did the ocean initializations provide skill in the soil

moisture forecast but limited skill in the precipitation forecast on
the S2D timescale (Fig. 2)? Soil moisture variability has a redder
spectrum than precipitation64. A recent study hypothesized a new
climate process, soil moisture reemergence, in which moisture
anomalies stored deep in the soil column can provide year-to-year
soil moisture memory18. In parallel research, ocean reemergence
studies65–67 have found that much of the PDV results from the
reemergence, which acts to redden the ENSO signal in the North
Pacific19. It will be worth investigating further whether the
reddened soil moisture signal is driven by atmospheric tele-
connections only32 or if the land processes contribute to the
redness by integrating the ENSO signal in the same way as the
North Pacific does.
The soil moisture-precipitation feedback is weak in the climate

model used for this study (CESM1) (Fig. 6). When compared to

observations and reanalysis data, Mei and Gulling57 found a
smaller effect of antecedent soil moisture conditions on precipita-
tion in an earlier version of the CESM1 model (CAM4-CLM4).
Infanti and Kirtman68 have also found a weak land initialization
effect on precipitation in CAM4-CLM4. A weak soil moisture to
precipitation feedback contributes to a muted effect of land
initialization on soil moisture predictability compared with the
observation (Fig. 6). Clearly, there exists an opportunity to develop
and improve the seasonal to multi-year soil moisture drought
forecasting system based on recent advances in earth system
modeling and our improved understanding of long-memory land
surface processes.

METHODS
Forecast anomalies calculation
The DPLE forecast anomalies are computed with respect to its lead
time-dependent forecast climatology as described below69:

fAi;l;y ¼ fi;l;y � 1
p

Xp

y¼1

1
n

Xn

i¼1

fi;l;y

 !
(1)

where fi, l, y is the DPLE forecast initialized in year y (1980, 1981,
…… 2015), at lead months l (1, 2, …. 122), and ith ensemble (1, 2,
…40) for a given variables soil moisture or precipitation; fAi;l;y is
the corresponding forecast anomalies.

Fig. 4 The annual average predictability of (a) the root zone (0–0.5m) soil moisture and its comparison with (b) the precipitation
predictability in the CESM-DPLE, and using signal to (signal+ noise) ratio metric. Twelve-month average anomalies (non-overlapping) are
calculated for each year of the forecast lead time, and before calculating the signal to total ratio. Stippling shows statistical significance at a
95% confidence level. The bottom panel (c) shows areas of the significant predictability area for soil moisture and precipitation in North
America.
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The LE anomalies are computed with respect to its ensemble
average climatology for the given month as below:

LEAi;m;y ¼ LEi;m;y � 1
p

Xp

y¼1

1
n

Xn

i¼1

LEi;m;y

 !
(2)

where LEi, m, y is the LE simulations for year y (1980, 1981, ……
2015), and the given month m (1, 2,…. 12), and ith ensemble (1, 2,
…, 40) for a given variables soil moisture or precipitation; LEAi, m, y

is the corresponding LE anomalies.

The observation (CLM) anomalies are computed with respect to
observation climatology:

OAm;y ¼ Om;y � 1
p

Xp

y¼1

Om;y
� �

(3)

where Om, y is the CLM land-only simulations for year y (1980,
1981,……, 2015), and the given month m (1, 2,…., 12) for a given
variables soil moisture or precipitation; OAm, y is the correspond-
ing observation anomalies. Figure 1 demonstrates that the
methodology outlined here successfully removed the initial drift
in the DPLE forecast47,69, and gives comparable results among
three experiments: DPLE, LE, and Observations (CLM).

Signal to total ratio
To diagnose potential predictability, we determined the squared
signal-to-noise ratio (SNR)48 at a given lead time as

SNR ¼ Vs
Vn

¼
1
p

P
p fA�yl � fA��l
� �2

1
np

P
p

P
i fAiyl � fA�yl
� �2 (4)

where fA��l ¼ 1
np

Pp
y¼1

Pn
i¼1 fAiyl and f�yl ¼ 1

n

Pn
i¼1 fAiyl . VS repre-

sents the variability of the ensemble mean, which is a
potentially predictable signal due to initializations; Vn is
variability about the ensemble mean, or the noise term. The
null hypothesis of no predictability can be rejected at the 95%
level if SNR � F0:05p�1; pðn�1Þ � p�1

pðn�1Þ, where F0:05p�1; pðn�1Þ is the upper
5% threshold for the F-distribution with p-1 and p (n−1)
degrees of freedom. The “signal-to-total ratio” is then defined as
STR ¼ SNR

SNRþ1, which varies from 0 to 1. Note that for an infinite-
member perfect-model ensemble, we may measure forecast
skill of the predicted signal by the anomaly correlation, which
can be shown is equivalent to the square of STR70; that is, STR is
a measure of predictability. We computed STR for each forecast
month (1–122 months lead forecasts), and their 3-month
average values, representing different seasons, are shown in
Fig. 2.

Fig. 5 Apportionment entropy (AE) for the observed precipitation and soil moisture data. Please note that the color scale for the AE of the
precipitation is one order magnitude higher than that of the soil moisture. AE71 is a non-parametric measure of sub-seasonal to seasonal
variability in the data—higher AE represents a higher variability in the data (see the “Methods” section).

Fig. 6 The scope of improving the forecast skill by developing
models that show comparable effect of the antecedent soil
moisture on precipitation forecast as found in the observational
estimates. Figure compares the effect of land initialization on
precipitation and soil moisture forecasts in the CESM-DPLE with that
of the observational estimates from CLM4 and CLM4.5. The figure
shows anomaly correlations between initial condition total soil
moisture anomalies and the ensemble average forecast (colored
lines) or observations (black lines) in the respective experiments.
The GLEAM root zone soil moisture data results is also shown.
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Disentangling the effects of land initialization
We determined initial condition soil moisture anomalies from the LE
ens# 34, averaged over the previous year. For example, for the
forecast start date on November 1, 1980, we computed the initial
condition soil moisture anomalies averaged from November 1, 1979
to October 31, 1980, and over the entire soil depth (0–3.8m). We
tested other permutation of the initial condition anomalies, e.g., the
last 3 months, and the root zone anomalies. We found that the past
12 months and total depths gives the best result for soil moisture
predictability at greater than one-year lead-time. We found that
antecedent condition from the past 3 months give a higher anomaly
correlation during the first year, but its influence decreases after one
year (Supplementary Fig. 6). Then we computed anomaly correla-
tions between initial condition soil moisture anomalies and the
ensemble average forecast anomalies at the given lead and for
36 start date (1980– 2015). For observational analysis (black lines in
Fig. 6), we shifted the analysis from 1970 to 2005, so that for
November 1, 2005, soil moisture anomalies, the observations are
available at 10 years to lead time, i.e., in October 2015.

Apportionment entropy (AE)
AE is a non-parametric measure to assess sub-seasonal to seasonal
variability in the data. We applied a modified form of the AE
formula taken from Konapala et al.71.

AE ¼ log 12þ
X12

i¼1

xi=Xð Þlog xi=Xð Þ (5)

X ¼
X12

i¼1

xi (6)

where xi is the monthly precipitation or soil moisture climatology.
If the total annual precipitation or soil moisture is equally
distributed across the 12 months i.e. xi/X= 1/12 then AE= 0.
Whereas, if all the precipitation fall in one month only, then AE=
log 12, i.e., AE ranges between 0 and log 12, with the smaller
values representing less sub-seasonal to seasonal variability and
larger values representing a higher sub-seasonal to seasonal
variability. We have used natural logarithm (base e) and multiplied
the AE by an arbitrary number 100 for better number representa-
tion in Fig. 5.

DATA AVAILABILITY
The CESM DPLE (https://www.cesm.ucar.edu/projects/community-projects/DPLE/)
and CESM LE (https://www.cesm.ucar.edu/projects/community-projects/LENS/) data
are available from NCAR.

CODE AVAILABILITY
The analysis codes can be made available upon reasonable request to the
corresponding author.
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