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Representations and decodability of diverse
cognitive functions are preserved across the
human cortex, cerebellum, and subcortex
Tomoya Nakai 1,2✉ & Shinji Nishimoto1,3,4

Which part of the brain contributes to our complex cognitive processes? Studies have

revealed contributions of the cerebellum and subcortex to higher-order cognitive functions;

however, it has been unclear whether such functional representations are preserved across

the cortex, cerebellum, and subcortex. In this study, we use functional magnetic resonance

imaging data with 103 cognitive tasks and construct three voxel-wise encoding and decoding

models independently using cortical, cerebellar, and subcortical voxels. Representational

similarity analysis reveals that the structure of task representations is preserved across the

three brain parts. Principal component analysis visualizes distinct organizations of abstract

cognitive functions in each part of the cerebellum and subcortex. More than 90% of the

cognitive tasks are decodable from the cerebellum and subcortical activities, even for the

novel tasks not included in model training. Furthermore, we show that the cerebellum and

subcortex have sufficient information to reconstruct activity in the cerebral cortex.
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Humans can perform various cognitive tasks, such as
speech, calculation, memory retrieval, and decision-
making. A central question of cognitive neuroscience is

which part of the brain contributes to these higher-order cogni-
tive functions. The cerebral cortex (or neocortex) has long been
considered to play critical roles in human intelligence1,2, whereas
recent cross-species comparison across primates suggested that
the expansion of cortical size or neuronal numbers is debatable3,4.
In contrast to the cerebral cortex, the cerebellum contains four
times the number of neurons5. During evolution, the cerebellar
volume increased relative to the cerebral cortex in humans and
other primates6. Cross-species comparison also revealed larger
subcortical volumes, such as the hippocampus and amygdala,
than in other primates7. Functional magnetic resonance imaging
(fMRI) also demonstrated altered functional cortico-subcortical
networks in humans compared with marmoset8. These previous
studies suggest a possible contribution of functional reorganiza-
tion of the cerebellum and subcortex to our higher-order cogni-
tive functions.

Recent neuroimaging studies have shown the contribution of
the cerebellum to multiple cognitive domains, such as motor
coordination9,10, language11, emotion12, working memory13, and
cognitive control14, as well as partly overlapping networks of
multiple cognitive functions15–18. Particularly, King et al. mea-
sured brain activity while subjects performed 47 task conditions
and revealed functional parcellation comprising of 10 distinct
functional subregions of the cerebellum17.

Subcortex subregions are also associated with multiple cogni-
tive abilities. For example, the hippocampus is involved in epi-
sodic memory19,20, spatial navigation21, learning and retrieval of
sequential events22. The amygdala is involved in emotion
recognition23,24, uncertainty processing25, and decision making26.
Thalamus has been associated with multiple cognitive
functions27–29 and is considered to play the role of the “hub” in
cortico-subcortical networks30. These previous studies have
shown the contributions of the cerebellum and subcortex to
higher-order cognitive functions, yet their representational
organization has not been examined in a quantitative way.

Voxel-wise encoding models have been used to quantitatively
evaluate various sensory features for their predictive perfor-
mance of brain activity31, as well as their modulation by
selective attention32,33. Voxel-wise modeling also allows us to
decode and reconstruct various visual images and movies from
brain activity34–36. These methods have also been applied to
higher-order brain functions, such as semantics33,37–42 and
emotion information43,44. Particularly, using both sparse task-
type and continuous cognitive factor features, we visualized the
cortical organization of 103 cognitive tasks in an earlier study
and significantly decoded 95% of tasks based on the brain
activity of the cerebral cortex45. However, it has not yet been
examined how such representations differ among various brain
parts, namely the cortex, cerebellum, and subcortex. To address
these issues, we reanalyzed our previous fMRI data45 and
constructed voxel-wise encoding and decoding models inde-
pendently using cortical, cerebellar, and subcortical voxels
(Fig. 1). The current approach reveals representations of
abstract cognitive functions not only in the cerebral cortex but
also in the cerebellum and subcortex.

Results
Brain representations of task structures were preserved across
the cortex, cerebellum, and subcortex. To examine whether the
representations of diverse cognitive tasks were similar across the
cortex, cerebellum, and subcortex, we constructed a series of
encoding models using sparse task-type features composed of

one-hot vectors corresponding to the 103 tasks. Therefore, we
visualized the representational structures of cognitive tasks using
the representational similarity matrix (RSM) based on the weight
matrices of the task-type encoding models for each region
(Fig. 2a–c). The RSM was obtained by calculating the Pearson’s
correlation coefficients between the averaged weights of all task
pairs across three time delays, concatenated across six subjects.
The order of the 103 tasks in the RSMs were determined using
hierarchical clustering analysis with the weight matrix of the
cerebral cortex (Fig. 2a) and further applied to the orders of the
other RSM of the cerebellum and subcortex (Fig. 2b, c, respec-
tively). Overall, task structures were preserved across the cortex,
cerebellum, and subcortex, which was quantified by positive
correlation coefficients between elements of the RSM of the
cortex and cerebellum (Spearman’s correlation coefficient,
ρ= 0.861; Fig. 2d) as well as between those of the cortex and
subcortex (ρ= 0.624; Fig. 2e). Meanwhile, we also found a dif-
ference across the three brain parts. The standard deviation (SD)
of representational task similarities was larger in the cortex than
in the cerebellum and subcortex (Fig. 2f), suggesting that the
structure of cognitive tasks is more distinctively organized in the
cortex compared to the cerebellum and subcortex.

103 cognitive tasks varied in their visual and auditory inputs,
and some tasks required motor outputs. The similarity of task
structures across the three brain parts could be obtained merely
by the difference of task-specific sensorimotor information. To
exclude such a possibility, we first extracted visual features using
the motion energy (ME) model, auditory features using the
modulation transfer function (MTF) model, and motor features
using the button response (BR) model (see Motion energy
features, Modulation transfer function features, and Button
response features subsections in Methods for detail) and
concatenated those features to obtain sensorimotor features. We
then performed the encoding model analyses 50 times within the
training dataset using sensorimotor features and excluded the
reliably predicted voxels (having a prediction accuracy of at least
r= 0.3) from further analyses (sensorimotor voxels, Supplemen-
tary Fig. 1, Supplementary Table 1). RSMs were then obtained
after excluding sensorimotor voxels. The task structures were not
largely affected by this analysis (Supplementary Fig. 2). We again
found significant correlations between the elements of the RSM of
the cortex and cerebellum (ρ= 0.832) (Supplementary Fig. 2a)
and between those of the cortex and subcortex (ρ= 0.671)
(Supplementary Fig. 2b). We found similar results with the other
thresholds (r= 0.2, 0.1) for selecting sensorimotor voxels
(Supplementary Note 1). These results indicate that the abstract
tasks structures were similar across the cortex, cerebellum, and
subcortex.

Metadata-based interpretation of the task organizations in the
cerebellum and subcortex. Although the similarity-based ana-
lyses in the previous section showed different representation
patterns of 103 tasks in the cortex, cerebellum, and subcortex, it
was unclear what cognitive factors contributed to these organi-
zations. To interpret cognitive factors related to those tasks, we
first performed principal component analysis (PCA) on the
averaged weight matrix of the task-type model concatenated
across six subjects. The resultant PCs were then associated with
independent cognitive factors using a metadata-based reverse
inference analysis. For each of the PC score maps, we calculated
Pearson’s correlation coefficients with the 715 reverse inference
maps taken from the Neurosynth database46. The top and bottom
10 terms of each PC provided their objective interpretations
(Supplementary Tables 2, 3). For the sake of intelligibility, we
only presented the results of the top five PCs.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04221-y

2 COMMUNICATIONS BIOLOGY |          (2022) 5:1245 | https://doi.org/10.1038/s42003-022-04221-y | www.nature.com/commsbio

www.nature.com/commsbio


For the cerebellum, PC1 was associated with introspection and
emotion terms on the positive side (top 10 terms; “theory mind,”
“disgust”) and executive function and motor terms on the
negative side (bottom 10 terms; “working memory,” “motor”).
Contrarily, PC2 was associated with executive function terms on
the positive side (“working memory,” “execution”) and intro-
spection terms on the negative side (“autobiographical,” “theory
mind”). PC3 was associated with language terms on the positive
side (“sentence,” “comprehension”) and motor terms on the
negative side (“motor,” “finger”). PC4 was associated with motor
terms on the positive side (“finger,” “sensorimotor”) and language
terms on the negative side (“reading,” “linguistic”). PC5 was
associated with executive function terms on the positive side
(“cognitive task,” “execution”) and motor terms on the negative
side (“finger,” “motor”).

For the subcortex, PC1 was associated with emotion terms on
the positive side (“emotion,” “valence”), whereas it was associated
with motor terms on the negative side (“finger,” “movement”).
PC2 was associated with memory terms on the positive side
(“memory,” “retrieval”) and somatosensory terms on the negative
side (“pain,” “somatosensory”). PC3 was associated with motor
terms on the positive side (“muscle,” “finger”) and emotion terms
on the negative side (“pain,” “emotion”). PC4 was also associated
with motor terms on the positive side (“preparation,” “motor”)
and somatosensory terms on the negative side (“pain,” “soma-
tosensory”). PC5 was associated with memory terms on the
positive side (“retrieval,” “memory”) and motor terms on the
negative side (“finger,” “sensorimotor”).

Visualization of representational structures of diverse tasks in
the 2-dimensional cognitive spaces. To provide a visual repre-
sentation of diverse cognitive functions in different brain regions,
we mapped all tasks onto 2-dimensional cognitive spaces using
the loadings of the first and second PCs as the x-axis and y-axis,
respectively (Cerebellum, Fig. 3a, Supplementary Fig. 3; Sub-
cortex, Fig. 4a, Supplementary Fig. 4; see the visualization for the
cortical voxels in our previous study45). The top five PCs
explained 30.1% of the variances in the cerebellum weight matrix
and 25.0% of the variances in the subcortex weight matrix
(Figs. 3b, 4b). The 2D map based on the cerebellum showed
consistent task organization with the metadata-based interpreta-
tion of PCs. Introspection tasks (“ImagineFuture”, “RecallFace”)
are colored in red and located on the right side (i.e., on the
positive side of the PC1). Tasks related to the executive function
(“CalcHard”, “PropLogic”) are colored in green and located on
top (i.e., on the positive side of the PC2). Language tasks (“Sar-
casm”, “WordMeaning”) are colored in blue. The 2D map
obtained based on the subcortex also showed consistent task
organization with the metadata-based interpretation of PCs.
Emotional tasks (“RateHappyPic”, “RateDisgustPic”) are colored
in red and located on the right side (i.e., on the positive side of the
PC1). Memory tasks (“LetterFluency”, “RecallFace”) are colored
in green and located on top (i.e., on the positive side of the PC2).
Motor tasks (“PressOrdHard”, “PressLeft”) are colored in blue.

To scrutinize representational differences in each subregion of
the cerebellum and subcortex, we visualized average weight values
of 103 tasks in each subregion (Figs. 3c–d, 4c–d). Based on the

Fig. 1 Experimental design and analyses. Some figures were modified from one of our previous studies45. a The subjects performed 103 naturalistic tasks
while the brain activity was measured using functional magnetic resonance imaging. Ten example tasks were shown. b Schematic of the encoding model
fitting using the sparse task-type and continuous cognitive factor features. Three different encoding models were constructed using ridge regression, with
cortical, cerebellar, and subcortical voxels.
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previous multiple task study17, we used function-based multi-
domain task battery (MDTB) parcellations of the cerebellum. For
example, motor movement tasks such as “Press Right” had a
positive weight in MDTB_2 regions of interests (ROI) (labeled as
“Right-hand presses,” Fig. 3c). “Language” tasks had a positive
weight in MDTB_8 ROI (labeled as “Word Meaning,” Fig. 3d)
(see the results of other subregions in Supplementary Fig. 5).
These functional associations were consistent with functional
parcellation labels17, indicating that functional organization in
the cerebellum was well captured by the visualization method of
the current study.

A similar analysis was also performed for the subcortex
subregions. For example, memory and imagery tasks had a
positive weight in the left hippocampus (Fig. 4c), whereas
demanding tasks, such as calculation, had a positive weight in the
right caudate (Fig. 4d) (see the results of other subregions in
Supplementary Fig. 6). These results showed how representations
of multiple cognitive functions are distributed in the subcortex.

Decoding of novel cognitive tasks from the activity of the
cortex, cerebellum, and subcortex. To examine the specificity of
how multiple cognitive tasks were represented in the different
parts of the brain, we constructed decoding models for each, the
cerebral cortex, cerebellum, and subcortex (Fig. 5a). To further
assess the generalizability of the decoding models to novel tasks,
we extracted 715 latent cognitive factors related to each of the
103 tasks and constructed cognitive factor feature matrices.

Cognitive factor features were calculated based on Pearson’s
correlation coefficients between the weight maps of the task-
type model and reverse inference maps of the Neurosynth46 (see
the Cognitive factor features subsection in Methods for
details). We then trained a decoding model to estimate the
cognitive factor features for 80% of the tasks and decoded the
remaining 20%.

The decoding model of the cerebral cortex significantly
decoded more than 95% of the cognitive tasks (decoding
accuracy, mean ± SD, 0.952 ± 0.009; Fig. 5b top, Supplementary
Tables 4–5) (see Supplementary Fig. 7 for the data of the other
subjects). Significance of the decoded accuracy was further
evaluated using a one-sided sign test; more than 99% of tasks
were significantly decoded (mean ± SD, 99.5% ± 0.5% of the tasks
were significant; P < 0.05, false discovery rate [FDR]-corrected).
We also found that more than 90% of the cognitive tasks were
significantly decoded using only cerebellar voxels (decoding
accuracy, mean ± SD, 0.918 ± 0.015; 97.1% ± 1.9% of the tasks
were significant; Fig. 5b middle) or subcortical voxels (decoding
accuracy, mean ± SD, 0.856 ± 0.013; 92.7% ± 2.2% of the tasks
were significant; Fig. 5b bottom), although the overall decoding
accuracies were smaller than that of the decoding model based on
the cortical voxels. To check the robustness of our decoding
results, we performed permutation tests by randomly shuffling
task labels in the test dataset for a total of 5,000 times. This
analysis showed that tasks were significantly decoded in all three
brain regions for all subjects (P < 0.001).
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Fig. 2 Similar task representations across the cortex, cerebellum, and subcortex. a–c The representational similarity matrix (RSM) was constructed
based on task similarity (Pearson’s correlation coefficient) between each task pairs for the a cortex, b cerebellum, and c subcortex. Task similarity was
calculated using weight vectors of all voxels included in the target region, concatenated across six subjects. A total of 103 tasks were ordered based on
hierarchical clustering analysis for the cortical data. Task similarity was transformed to the rank percentile for the purpose of visualization. Task similarities
were plotted d for the cortex and cerebellum, and e for the cortex and subcortex (n = 5,253). f Standard deviation of task similarities across the cortex,
cerebellum, and subcortex.
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The above one-vs.-one method provided very high decoding
accuracy for all three brain parts; thus, the variability of
decoding performances across tasks was unclear because of this
ceiling effect. To examine such variability, we quantified
decoding accuracy using task score (see Methods for details).
We found that 99.5% ± 0.5% of tasks were significantly decoded

using cortical activity (decoding accuracy, mean ± SD,
0.592 ± 0.018; Fig. 5c top, Supplementary Tables 6–7), 98.7%
± 0.5% of tasks were significantly decoded using cerebellar
activity (decoding accuracy, 0.520 ± 0.027; Fig. 5c middle), and
95.5% ± 2.3% of tasks were significantly decoded using
subcortical activity (decoding accuracy, 0.404 ± 0.020; Fig. 5c
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bottom) (See Supplementary Fig. 7 for the data of the other
subjects). Permutation tests also showed that tasks were
significantly decoded in all three brain regions for all subjects
(P < 0.001).

To further examine whether the observed decoding accuracy is
affected by low-level sensorimotor factors, we constructed a
decoding model without sensorimotor voxels (see Methods for
details). The model decoded most cognitive tasks from cortical
(decoding accuracy, mean ± SD, 0.950 ± 0.008; 99.2% ± 0.7% of
the tasks were significant), cerebellar (decoding accuracy, 0.915 ±
0.015; 96.8% ± 2.1% of the tasks were significant), and subcortical
activities (decoding accuracy, 0.856 ± 0.012; 92.4% ± 2.1% of the
tasks were significant) (Supplementary Fig. 8, Supplementary
Tables 4–5). These results indicated that the cortex, cerebellum,
and subcortex have abstract representations of cognitive func-
tions, which can distinguish diverse cognitive tasks.

Decoding performances were similar between the cortex and
cerebellum (Spearman’s correlation coefficient, mean ± SD,
ρ= 0.808 ± 0.020; Fig. 5d), as well as between the cortex and
subcortex (ρ= 0.627 ± 0.060; Fig. 5e, Supplementary Fig. 9).
Positive correlations of decoding performances were again found
after excluding the sensorimotor voxels (between the cortex and
cerebellum, ρ= 0.838 ± 0.025; cortex and subcortex,
ρ= 0.671 ± 0.081, Supplementary Fig. 10), indicating that even
the cerebellar and subcortical voxels can cover a sufficient portion
of our cognitive space to be generalized to novel tasks.

To test decoding performance in a model-independent way, we
also decoded over 100 tasks directly from brain activity using a
support vector machine (Supplementary Fig. 11, Supplementary
Tables 8–9). Note that this analysis did not decode novel tasks.
We discovered that most tasks were significantly decoded from
cortical (decoding accuracy, mean ± SD, 0.975 ± 0.021; all tasks
were significant; one-sided sign tests, P < 0.05, FDR-corrected),
cerebellar (decoding accuracy, 0.875 ± 0.006; 98.7% ± 3.2% of the
tasks were significant), and subcortical activities (decoding
accuracy, 0.756 ± 0.037; 95.0% ± 4.3% of the tasks were
significant).

Reconstruction of cortical activity from cerebellar and sub-
cortical activities. Finally, we tested whether the activity in the
cerebral cortex can be reconstructed from activities in the cere-
bellum and subcortex (Fig. 6a). We first applied PCA to the brain
activity of the cerebellum and subcortex and reduced it to 2,000
dimensions. This analysis preserved 89.2% ± 1.7% (mean ± SD)
and 93.8% ± 1.2% of variances of the activity in the cerebellum
and subcortex, respectively. We thus used these activities as fea-
ture matrices in encoding models to predict cortical activity. The
cerebellum encoding model significantly predicted the activity of
95.7% ± 1.6% of cortical voxels (prediction accuracy,
0.385 ± 0.022; Fig. 6b, Supplementary Fig. 12). The subcortex
encoding model significantly predicted the activity of 94.1% ±
2.7% of cortical voxels (prediction accuracy, 0.320 ± 0.025; Fig. 6c,
Supplementary Fig. 13). The cerebellum + subcortex encoding
model significantly predicted the activity of 96.3% ± 2.3% of
cortical voxels (prediction accuracy, 0.392 ± 0.033; Figs. 6d, e,

Supplementary Fig. 14). The prediction performances of the
above three models were relatively high compared with the
encoding models using sparse task-type features (0.296 ± 0.055;
82.6% ± 7.2% of the cortical voxels were significant) and cognitive
factor features (0.337 ± 0.049; 87.9% ± 5.2% of the cortical voxels
were significant) (Fig. 6f).

To exclude the possibility that the prediction performances of
cerebellum and subcortex models are caused by correlated noise
among three brain parts, we constructed additional encoding
models after subtracting average brain response across the entire
brain in each time point. These models again predicted activity in
most cortical regions (prediction accuracy of the cerebellum
model 0.365 ± 0.020; the subcortex model, 0.295 ± 0.016; the
cerebellum + subcortex model, 0.365 ± 0.029). These results
indicate that a large part of the cortical activity can be
reconstructed based on the cerebellar and subcortical activities.

Discussion
In the current study, we examined representations of abstract
cognitive functions stored in the cerebellum and subcortex using
a voxel-wise modeling approach. Representational similarity
analysis (RSA) revealed similar task structures across the cortex,
cerebellum, and subcortex. By using cerebellar and subcortical
activities, we decoded a large portion of cognitive tasks, including
novel tasks that were not included in the model training.
Encoding model analysis further supports our findings that the
cerebellum and subcortex contain sufficient information to
reconstruct cortical activity.

In our previous study of voxel-wise modeling of cognitive
functions, we focused only on the activity of the cerebral cortex45.
In the current study, we extended our previous approach to the
cerebellum and subcortex, which contrasted with most previous
voxel-wise modeling studies focused on the activity in the cerebral
cortex. One previous study examined the cerebellum’s contribu-
tion to multiple linguistic information using a voxel-wise mod-
eling approach, which revealed a distribution of higher-order
semantic concepts in the cerebellum47. Another voxel-wise
modeling study used movie stimuli and reported emotion
representations distributed in the subcortical regions and
cerebellum43. In addition to the linguistic and emotional infor-
mation, the current study also covered a wide variety of cognitive
domains using a larger number of tasks compared with previous
studies15–18, providing a powerful tool to comprehensively
compare functional organizations between the cortex, cerebellum,
and subcortex.

Although the RSM showed a smaller SD in the cerebellum and
subcortex than in the cortex, such difference in task similarity
might be caused by the low signal-to-noise ratio (SNR) in the
cerebellum and subcortex, rather than by the intrinsic distinc-
tiveness of task representations. It is possible that task repre-
sentations are equally distinct in the cerebellum and subcortex
but are less clear due to the signal/noise quality of the current
fMRI measurement. Further improvement in the measurement of
cerebellar and subcortical activity is needed to disentangle the

Fig. 3 Visualization of task structures in the cerebellum. a Color and spatial visualization of the cognitive space. Colors indicate the normalized loadings
of the top three principal components [PC1, red; PC2, green; PC3, blue] of the task-type model weights (concatenated across subjects), mapped onto the
two-dimensional cognitive space based on the loadings of PC1 and PC2. Each PC is labeled based on metadata-based interpretation analysis
(Supplementary Table 2). All tasks are presented in white letters. For a better visibility, only 30 tasks are shown in white. b Variance explained in the PCA.
The explained variance of the original weight matrix of the task-type model was plotted for each PC. c, d Examples of task selectivity for voxels in the
functional subregions in the cerebellum (multi-domain task battery (MDTB) parcellation17) of c MDTB_2 (Right-hand presses), and d MDTB_8 (Word
comprehension), mapped onto the same two-dimensional cognitive space as a for subject ID01. Tasks with positive and negative weight values in c and
d were indicated in yellow and cyan, respectively. The circle size was modulated based on the absolute weight value.
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Fig. 4 Visualization of task structures in the subcortex. a Color and spatial visualization of the cognitive space. Colors indicate the normalized loadings of
the top three principal components [PC1, red; PC2, green; PC3, blue] of the task-type model weights (concatenated across subjects), mapped onto the two-
dimensional cognitive space based on the loadings of PC1 and PC2. Each PC is labeled based on metadata-based interpretation analysis (Supplementary
Table 3). All tasks are presented in white letters. For a better visibility, only 30 tasks are shown in white. b Variance explained in the PCA. The explained
variance of the original weight matrix of the task-type model was plotted for each PC. c–d Examples of task selectivity for subcortical voxels in the c left
hippocampus and d right caudate, mapped onto the same two-dimensional cognitive space as a for subject ID01. Tasks with positive and negative weight
values in c and d were indicated in yellow and cyan, respectively. The circle size was modulated based on the absolute weight value.
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SNR effect from the distinctiveness of task representations across
different brain regions.

The metadata-based inference analysis revealed that both
positive and negative sides of the top five PCs were associated
with introspection/emotion, executive function, language, and
motor terms. The involvement of the cerebellum in these cog-
nitive factors has been reported in various previous studies (e.g.,
motor9,10, language11,47, emotion/introspection12,48, and
executive function14,49). We further investigated the functional
contributions of cerebellum subregions to these cognitive fac-
tors using the functional parcellation of King et al. (2019)17. We
adopted functional ROIs (fROIs) instead of anatomical ROIs
because the study reported the dissociation between anatomical
and functional parcellation. In line with this, fROIs have
functional labels, which would be appropriate for testing the
validity of the current study. Consistent with functional labels,
we found that motor tasks such as “PressRight” had a larger
weight than “PressLeft” in the cerebellar subregion MDTB_2
(Right-hand presses), whereas “PressLeft” had a larger weight in
the MDTB_1 (Left-hand presses) (Fig. 3c, Supplementary
Fig. 5a). Language-related tasks such as “WordMeaning” and
“MoralPersonal” had larger weights on the positive side of PC3
(colored blue in Fig. 3a, related to language terms) in the
MDTB_7 (Narratives) and MDTB_8 (Word comprehension)
(Fig. 3d, Supplementary Fig. 5f). Demanding tasks such as
“CalcHard” and “RelationLogic” had larger weights on the
negative side of the PC1 and positive side of the PC2 (related to
executive function terms) in the MDTB-5 and MDTB-6 (Divi-
ded attention) (Supplementary Fig. 5d, 5e). Imagination and
recall tasks such as “RecallFace” and “ImagineFuture” had lar-
ger weights on the positive side of PC1 (related to

introspection terms) in the MDTB_10 (Autobiographical recall)
(Supplementary Fig. 5h). These results confirmed the validi-
ty of functional parcellation in the cerebellum and demon-
strated the diversity of task representations even within the
same fROIs.

As for the subcortex, both positive and negative sides of the top
five PCs were associated with emotion, memory, and motor
terms, whereas the negative sides were further associated with
somatosensory terms. The association of these terms was likely
due to the contribution of subcortex subregions. The bilateral
amygdala had larger weights on the positive side of PC1 (related
to emotion terms; Supplementary Fig. 6c, d), which is consistent
with previous studies reporting involvement of this region in
emotion recognition23,24. The bilateral hippocampus was more
weighted on the positive side of PC2 (related to emotion and
memory terms; Fig. 4d and Supplementary Fig. 6b), which was
consistent with previous studies in episodic memory and
retrieval19,20,22. The bilateral caudate was more weighted on the
negative side of PC1 (related to motor terms; Fig. 4d and Sup-
plementary Fig. 6b), in line with previous studies of motor control
and learning50,51. The bilateral thalamus was more weighted on
the negative side of PC2 (related to somatosensory terms; Fig. 4d
and Supplementary Fig. 6b), which is consistent with the widely-
known view of this region as a pathway of sensory
information52,53. Note that we used anatomical ROIs in the
analysis of subcortex subregions. Although a recent study pro-
vided a detailed parcellation based on functional connectivity
gradients54, we did not adopt this parcellation because the
functional labels were not provided for this atlas. Further inves-
tigation may clarify distinct cognitive spaces within each sub-
cortical structure using such parcellation.
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To exclude the possibility that similar task representations were
caused simply by low-level sensorimotor components, we per-
formed additional analysis by excluding voxels that were pre-
dictable by the sensorimotor features. This analysis was more
conservative than the analysis adopted in our previous study,
which concatenated sensorimotor features with the target
features45 or quantitatively assessed the ratio of explained
variances33,39. This is because the current approach excludes
voxels which may contain both sensorimotor and task-related
information. Although the current approach may underestimate
representational similarity and decodability across the three brain
parts, it more robustly ruled out the possible contribution of
sensorimotor features. The current approach also had another
advantage that allowed us to perform decoding analysis after
excluding sensorimotor voxels, in contrast to the previous

approach that was applicable only for encoding models. We thus
concluded that the high decoding performance of the cortex,
cerebellum, and subcortex was not caused by the sensorimotor
components of the multiple tasks.

In order to reconstruct the cerebral activity from the cerebellar
and subcortical activities, we adopted the voxel-to-voxel encoding
modeling technique55–57. The voxel-to-voxel encoding models use
brain activity as input instead of stimulus-induced features and can
capture unexplained variances by the latter features57. These models
outperformed encoding models using task-type or cognitive factor
features, indicating that the cerebellum and subcortex shared suffi-
cient information of cognitive functions with the cerebral cortex,
which was not fully captured by stimulus-induced features. The
voxel-to-voxel modeling paved the way for the construction of
appropriate features to represent human cognitive functions. Future
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works are necessary to clarify in more detail functional similarity and
distinctions across the cortex, cerebellum, and subcortex.

Methods
Subjects. As stated in our previous study45, six healthy subjects (aged 22–33 years,
2 females & 4 males; referred to as ID01–ID06) with normal vision and hearing
participated in the current experiment. All subjects were right-handed (laterality
quotient = 70–100), as assessed using the Edinburgh inventory58. Written
informed consent was obtained from all subjects prior to their participation in the
study. This experiment was approved by the ethics and safety committee of the
National Institute of Information and Communications Technology in
Osaka, Japan.

Stimuli and procedure. As explained in the earlier study45, we prepared 103
naturalistic tasks that could be performed without any pre-experimental training
(see Supplementary Note 2 for the detailed description of each task). Tasks were
selected to include as many cognitive domains as possible. Each task had 12
instances; 8 instances were used in the training runs, whereas 4 were used in the
test runs. The stimuli were presented on a projector screen inside the scanner (21.0
× 15.8° of visual angle at 30 Hz). The root-mean square of the auditory stimuli was
normalized. During scanning, subjects wore MR-compatible ear tips. The experi-
ment was performed for 3 days, with six runs performed each day. Presentation
software (Neurobehavioral Systems, Albany, CA, USA) was used to control the
stimulus presentation and collection of behavioral data. To measure button
responses, optic response pads with two buttons in each of the left and right hands
were used (HHSC-2×2, Current Designs, Philadelphia, PA, USA).

The experiment consisted of 18 runs, with 12 training runs and 6 test runs. Each
run contained 77–83 trials with a duration of 6–12 s per trial. To keep subjects
attentive and engaged and to ensure all runs had the same length, a 2-s feedback for
the preceding task (correct or incorrect) was presented 9–13 times per run. In
addition to the task, 6 s of imaging without a task was inserted at the beginning and
at the end of each run; the former was discarded in the analysis. The duration of a
single run was 556 s. In the training runs, task order was pseudorandomized, as
some tasks depended on each other and were therefore presented close to each
other in time (e.g., the tasks “MemoryDigit” and “MatchDigit”). In the test runs,
103 tasks were presented four times in the same order across all six runs (but with
different instances for each repetition). There was no overlap between the instances
in the training runs and test runs. No explanation of the tasks was given to the
subjects prior to the experiment. During the fMRI experiment, subjects were
instructed on how to perform each task by the instruction text that was shown as a
part of the stimuli. Subjects only underwent a short training session on how to use
the buttons used to respond.

MRI data acquisition. The experiment was conducted using a 3.0 T scanner (TIM
Trio; Siemens, Erlangen, Germany) with a 32-channel head coil. We scanned 72
interleaved axial slices that were 2.0-mm thick without a gap, parallel to the
anterior and posterior commissure line, using a T2*-weighted gradient echo
multiband echo-planar imaging sequence [repetition time (TR)= 2,000 ms, echo
time (TE)= 30 ms, flip angle (FA)= 62°, field of view (FOV)= 192 × 192 mm2,
resolution = 2 × 2 mm2, MB factor = 3]. We obtained 275 volumes for each run,
with each following three dummy images. For anatomical reference, high-
resolution T1-weighted images of the whole brain were also acquired from all
subjects with a magnetization-prepared rapid acquisition gradient echo sequence
(MPRAGE, TR= 2,530 ms, TE= 3.26 ms, FA= 9°, FOV= 256 × 256 mm2, voxel
size = 1 × 1 × 1 mm3).

fMRI data preprocessing. Motion correction in each run was performed using the
statistical parametric mapping toolbox (SPM12; Wellcome Trust Centre for Neu-
roimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). All volumes were
aligned to the first echo planar image for each subject. Low-frequency drift was
removed using a median filter with a 120-s window. The slice timing correction
was performed to the first slice of each scan. The response for each voxel was then
normalized by subtracting the mean response and scaling it to the unit variance.
We used FreeSurfer59,60 to identify the cortical surfaces from the anatomical data
and register them to the voxels of the functional data. For each subject, the voxels
identified in the cerebral cortex (53,345–66,695 voxels per subject), cerebellum
(12,505–15,262 voxels per subject), and subcortex were used in the analysis
(5,384–6,622 voxels per subject). For the subcortex, voxels in the bilateral hippo-
campus, caudate, amygdala, accumbens, pallidum, putamen, and thalamus were
included. Note that we refined preprocessing parameters (e.g., using SPM12 instead
of SPM8 and adding slice timing correction) compared with our previous study45,
which resulted in a slightly different distribution of representational similarities
and decoding accuracies in the cerebral cortex.

Task-type features. The task-type features were composed of one-hot vectors,
which were assigned 1 or 0 for each time bin, indicating whether one of the 103
tasks was performed in that period. The total number of task-type features was
thus 103.

Encoding model fitting. In the encoding model, cortical activity in each voxel was
fitted with a finite impulse response model that captured the slow hemodynamic
response and its coupling with neural activity35,61. The feature matrix FE [T × 3 N]
was modeled by concatenating sets of [T × N] feature matrices with three temporal
delays of 2, 4, and 6 s (T= # of samples; N= # of features). The cortical response
RE [T × V] was then modeled by multiplying the feature matrix FE with the weight
matrix WE [3 N × V] (V= # of voxels):

R̂E ¼ FEWE ð1Þ
We used an L2-regularized linear regression using the training dataset to obtain

the weight matrix WE. The training dataset consisted of 3,336 samples (6,672 s).
The optimal regularization parameter was assessed using 10-fold cross-validation,
with the 18 different regularization parameters ranging from 1 to 217.

The test dataset consisted of 412 samples (824 s, repeated four times). To
reshape the data spanning over six test runs into the four times-repeated dataset,
we discarded 6 s of the no-task period at the end of each run as well as the 2-s
feedback periods at the end of the third and sixth test runs. Four repetitions of the
test dataset were averaged to increase the signal-to-noise ratio. Prediction accuracy
was calculated using Pearson’s correlation coefficient between the predicted signal
and measured signal in the test dataset.

Evaluation of optimal regularization parameters. To keep the scale of the weight
values consistent across subjects, we performed a resampling procedure to assess
the optimal regularization parameter used for group RSA and PCA38. To this end,
we randomly divided the training dataset into training samples (80%) and vali-
dation samples (20%) for each subject and performed model fitting using an L2-
regularized linear regression. This procedure was repeated 50 times. The resultant
prediction accuracies were averaged across the six subjects for each parameter. We
selected the optimal regularization parameter that provided the highest mean
prediction accuracy across subjects. This regularization parameter was used for
model fitting for group RSA and PCA.

Representational similarity analysis. To examine hierarchical relations across
tasks, we conducted an RSA. First, we concatenated the weight matrix of predictive
voxels of the task-type model across six subjects. Concatenation of the estimated
weights was performed to obtain a group-level representation that provides a
common basis that is comparable across subjects37,38. To choose predictive voxels,
for each subject, we selected the voxels that exhibited a significant prediction
accuracy with P < 0.05 (with FDR correction) and averaged three time delays for
each task. We then obtained the RSM by calculating the Pearson’s correlation
coefficients between the averaged weights of all task pairs. A dendrogram of the 103
tasks was then obtained using the task dissimilarity (1 - correlation coefficient) as a
distance metric, using the minimum distance as a linkage criterion. For the purpose
of visualization, tasks were reordered based on the dendrogram obtained using the
cortical data.

Principal component analysis of task-type weights. For each brain region
(cortex, cerebellum, or subcortex), we performed PCA on the weight matrix of the
task-type model concatenated across six subjects. We selected the voxels that
showed significant prediction accuracy with P < 0.05 (with FDR correction) and
averaged three time delays for each task. To show the structure of the cognitive
space, 103 tasks were mapped onto the two-dimensional space using the loadings
of PC1 (first PC) and PC2 as the x-axis and y-axis, respectively. The tasks were
further colored in red, green, and blue based on the relative PCA loadings in PC1,
PC2, and PC3, respectively.

To represent the cortical organization of the cognitive space for each subject, we
extracted and normalized the PCA scores from each subject’s voxels. The resultant
cortical map indicated the relative contribution of each cortical voxel to the target
PC (denoted as PCA score map).

To obtain an objective interpretation of the PCs, we performed metadata-based
inference of the cognitive factors related to each PC. We used Neurosynth as a
metadata reference of the past neuroimaging literature46. From the approximately
3,000 terms in the database, we manually selected 715 terms that covered the
comprehensive cognitive factors while also avoiding redundancy. In particular, we
removed several plural terms that also had their singular counterpart (e.g.,
“concept” and “concepts”) and past tense verbs that also had their present
counterpart (e.g., “judge” and “judged”) from the dataset. We also excluded those
terms that indicated anatomical regions (e.g., “parietal”). We used the reverse
inference map of the Neurosynth database for each of the 715 selected terms. The
reverse inference map indicated the likelihood of a given term being used in a study
if the activity was observed at a particular voxel. Each reverse inference map in the
MNI152 space was then registered to the subjects’ reference echo planar imaging
(EPI) data using FreeSurfer59,60. For each of the PCA score maps, we calculated
Pearson’s correlation coefficients with the 715 registered reverse inference maps,
which resulted in a cognitive factor vector with 715 elements. Terms with higher
correlation coefficient values were regarded as contributing more to the target PC.

Cognitive factor features. To obtain task representations using continuous fea-
tures in the human cognitive space, we transformed sparse task-type features into
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latent cognitive factor feature space. We used the reverse inference map of the
Neurosynth database46 for each of the 715 terms selected. Each reverse inference
map in the Neurosynth database in MNI152 space was registered to the subjects’
reference EPI data using FreeSurfer59,60.

We then calculated the Pearson’s correlation coefficients between the weight
map for each task in the task-type model and the registered reverse inference maps.
This resulted in the [103 × 715] coefficient matrix. We next obtained the cognitive
transform function (CTF) for each subject by averaging the coefficient matrices of
the other five subjects. The CTF served to transform the feature values of the 103
tasks into the 715-dimensional latent feature space. The feature matrix of the
cognitive factor model was then obtained by multiplying the CTF with the feature
matrix of the task-type model. Note that the CTF (and the resultant feature matrix)
of each target subject was independent of their own data. The total number of
cognitive factor features was 715.

Exclusion of sensorimotor voxels. To exclude the possible effect of low-level
sensorimotor features on prediction and decoding performances, we performed an
additional encoding model fitting using sensorimotor components. Sensorimotor
features were obtained by concatenating ME features (visual), MTF features
(auditory), and BR features (motor) (see the following subsections for details). Our
previous studies validated the efficacy of these feature in controlling sensorimotor
information33,44,45. Moreover, ME and MTF features are easier to interpret than
neural network features because they explicitly modeled neuronal response pat-
terns in the early visual and auditory cortices. For each subject, we randomly
divided the training dataset into training (80%) and validation samples (20%) and
performed model fitting using an L2-regularized linear regression. This procedure
was repeated 50 times. The reliably predicted voxels by this analysis (having a mean
prediction accuracy of at least 0.3) were called as sensorimotor voxels and were
excluded from some of the analyses as described in the Result section.

Motion energy features. We used the ME model that has been used in previous
studies35,44,45 and provided in a public repository (https://github.com/gallantlab/
motion_energy_matlab). First, movie frames and pictures were spatially down-
sampled to 96 × 96 pixels. The RGB pixel values were then converted into the
Commission International de l’Eclairage (CIE) LAB color space, and the color
information was subsequently discarded. The luminance (L*) pattern was passed
through a bank of three-dimensional spatiotemporal Gabor wavelet filters. The
outputs of the two filters with orthogonal phases (quadrature pairs) were squared and
summed to yield local ME. ME was compressed with a log-transformation and
temporally downsampled to 0.5Hz. Filters were tuned to six spatial frequencies (0,
1.5, 3.0, 6.0, 12.0, 24.0 cycles per image) and three temporal frequencies (0, 4.0,
8.0 Hz), without directional parameters. Filters were positioned on a square grid that
covered the screen. The adjacent filters were separated by 3.5 standard deviations of
their spatial Gaussian envelopes. The total number of ME features was 1,395.

Modulation transfer function features. A sound cochleogram was generated
using a bank of 128 overlapping bandpass filters ranging from 20 to 10,000 Hz. The
window size was set to 25 ms and the hop size to 10 ms. The filter output was
averaged across 2 s (TR). We further extracted the features from the MTF model62,
which we provided in a public repository (https://osf.io/ea2jc/). For each
cochleogram, a convolution with modulation-selective filters was then calculated.
The outputs of the two filters with orthogonal phases (quadrature pairs) were
squared and summed to yield the local modulation energy. Modulation energy was
then log-transformed, averaged across 2 s, and further averaged within each of the
10 nonoverlapping frequency ranges logarithmically spaced along the frequency
axis. The filter outputs of the upward and downward sweep directions were used.
Modulation-selective filters were tuned to five spectral modulation scales (0.50, 1.0,
2.0, 4.0, 8.0 cycles per octave) and five temporal modulation rates (4.0, 8.0, 16.0,
32.0, 64.0 Hz). The total number of MTF features was 1,000.

Button response features. The BR features were constructed based on the
number of button responses within 1 s for each of the four buttons, with the right
two buttons pressed by the right thumb and the left two buttons pressed by the left
thumb. The total number of BR features was four.

Decoding model fitting. In the decoding model, the cortical response matrix RD

[T × 3 V] was modeled using concatenating sets of [T × V] matrices with temporal
delays of 2, 4, and 6 s. The feature matrix FD [T × N] was modeled by multiplying
the cortical response matrix RD with the weight matrix WD [3 V × N]:

F̂D ¼ RDWD ð2Þ
The weight matrix WD was estimated using an L2-regularized linear regression

with the training dataset, following the same procedure for the encoding model
fitting.

Decoding with novel tasks. In order to examine the generalizability of our
models, we performed encoding and decoding analyses with novel tasks not used

during model training (Fig. 5a). We randomly divided the 103 tasks into five task
groups. A single task group contained 20–21 tasks. We performed five independent
model fittings, each with a different task group as the target. From the training
dataset, we excluded the time points during which the target tasks were performed
and those within 6 s after the presentation of the target tasks. In the test dataset, we
used only the time points during which the target tasks were performed and those
within 6 s after the presentation of the target tasks. This setting allowed us to
assume that the activity induced by the target task group and that induced by the
other four task groups (training task groups) did not overlap, thus enabling us to
investigate prediction and decoding accuracies for novel tasks. We performed
encoding and decoding model fitting with the training task group, which was
composed of 82–83 tasks. For model testing, we concatenated the predicted
responses or decoded features of the five task groups. Responses or features for the
time points that were duplicated were then averaged across the five task groups.
Note that encoding and decoding with the novel tasks were only possible with the
cognitive factor model because the original tasks needed to be transformed into the
latent feature space.

For the decoding analysis with novel tasks, we measured the similarity between
the CTF of each task and each decoded cognitive factor vector using Pearson’s
correlation coefficients for each time point. We refer to the correlation coefficient
as the task score. We then calculated the time-averaged task scores for each task,
and then performed decoding using the one-vs.-one method. For each target task, a
series of binary classifications were performed between the target task and each of
the remaining 102 tasks. The decoding accuracy was then calculated as a ratio that
the target task had higher task score in this procedure. The one-vs-one decoding
accuracy (ranged [0, 1], chance level = 0.5) can be considered as a standardized
measure of the task score-based decoding accuracy (ranged [−1, 1], chance
level = 0).

Reconstruction of cortical activity from cerebellar and subcortical activities.
To evaluate whether the cerebellum and subcortex contain rich information to
reconstruct cortical activity, we constructed additional encoding models using the
cerebellar and subcortical activities as feature matrices. We first applied PCA to the
original brain response matrices of the cerebellum and subcortex to reduce their
dimensions to 2,000. Response matrices of the cerebellum and subcortex were
independently used in the cerebellum and subcortex encoding models, respectively.
For the cerebellum + subcortex encoding model, concatenated brain response
matrix (totally 4,000 dimensions) was used as a feature matrix. The above encoding
models were constructed and evaluated similarly as described in the encoding
model fitting section.

Statistics and reproducibility. Statistical significance of encoding models
(412 samples, one-sided) was computed by comparing estimated correlations with
the null distribution of correlations between the two independent Gaussian random
vectors with the same length as the test dataset38. The statistical threshold was set
at P < 0.05 and corrected for multiple comparisons using the FDR procedure63. The
statistical significance of the decoding accuracy (for both one-vs-one and task
score-based methods) was tested for each task using the one-sided sign test
(102 samples; P < 0.05, with FDR correction)64, which is a nonparametric statistical
test used in previous decoding studies45,65–67. The significance of average decoding
accuracy (across tasks) was further tested using the permutation test (P < 0.05).
Specifically, task labels in the test dataset were randomly shuffled 5,000 times, and
p-values were calculated (for both one-vs-one and task score-based methods) based
on the resultant null distribution of average decoding accuracy. Results from the six
subjects were considered as replications of the analyses. All model fitting and
analyses were conducted using custom software written on MATLAB. For data
visualization on the cortical maps, pycortex was used68.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MRI data are available at the OpenNeuro.org (https://openneuro.org/datasets/
ds002306)69. Source data underlying Figs. 2d–f, 3b, 4b, 5b–e, and 6f are provided in
Supplementary Data 1, 2, 3, 4, and 5, respectively. Other data are available from the
corresponding author upon reasonable request.

Code availability
The MATLAB code for building encoding and decoding models are available at the Open
Science Framework (OSF) repository associated with our previous study45 (https://osf.io/
ea2jc/). Additional codes used in the current study and the datasets generated and/or
analyzed during the current study are available upon request.
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