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Hierarchical Molecular Graph Self-Supervised
Learning for property prediction
Xuan Zang 1, Xianbing Zhao1 & Buzhou Tang1,2✉

Molecular graph representation learning has shown considerable strength in molecular

analysis and drug discovery. Due to the difficulty of obtaining molecular property labels, pre-

training models based on self-supervised learning has become increasingly popular in

molecular representation learning. Notably, Graph Neural Networks (GNN) are employed as

the backbones to encode implicit representations of molecules in most existing works.

However, vanilla GNN encoders ignore chemical structural information and functions implied

in molecular motifs, and obtaining the graph-level representation via the READOUT function

hinders the interaction of graph and node representations. In this paper, we propose Hier-

archical Molecular Graph Self-supervised Learning (HiMol), which introduces a pre-training

framework to learn molecule representation for property prediction. First, we present a

Hierarchical Molecular Graph Neural Network (HMGNN), which encodes motif structure and

extracts node-motif-graph hierarchical molecular representations. Then, we introduce Multi-

level Self-supervised Pre-training (MSP), in which corresponding multi-level generative and

predictive tasks are designed as self-supervised signals of HiMol model. Finally, superior

molecular property prediction results on both classification and regression tasks demonstrate

the effectiveness of HiMol. Moreover, the visualization performance in the downstream

dataset shows that the molecule representations learned by HiMol can capture chemical

semantic information and properties.
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In recent years, molecular representation learning has attracted
growing attention in the study of chemical drug analysis and
discovery1. Motivated by the remarkable success of machine

learning2, especially deep learning3, molecular representation
learning has increasingly explored machine learning-based
methods. These methods are widely used for various molecular
applications, such as chemical property prediction4,5, drug
molecule generation6–8, and optimization9. How to learn com-
prehensive and effective molecular representation remains an
open challenge.

Inspired by the development of Natural Language Processing
(NLP)10–12, a range of methods apply language models to handle
string-based molecular representations like SMILES13 and
SELFIES14. Specifically, these molecular strings are encoded by
Recurrent Neural Network (like Gated Recurrent Unit (GRU)15

and Long Short-TermMemory (LSTM)16 or Transformer12, which
can be trained in a supervised manner by predicting molecular
properties17. Further, to handle enormous unlabeled data, many
works pay attention to self-supervised learning (SSL) frameworks.
The SSL decoders generally generate the original strings18 or other
random SMILES of input molecules19 or recover masked tokens of
molecular strings20. Due to the single dimension of strings,
important topology structures of molecular graphs are ignored.
Therefore, many researchers have transformed their interests from
1D molecular strings to 2D graphs21,22. In view of the success of
SSL, graph SSL-based pre-training frameworks23–27 have been
increasing rapidly in the past few years. They capture the topology
of 2D graphs and have also shown a positive effect in molecular
analysis tasks. However, their commonality for all kinds of graphs
leads to the neglect of unique structural properties of chemical
molecules, such as rings and functional groups.

Many recent presentation learning works5,22,28–33 consider the
characteristic of molecular graphs. Zhang et al.32 model a clustering
problem to learn molecular motifs, and the GNN-encoded atom
representations are grouped into subgraphs for contrastive learn-
ing. Zhang et al.30 design self-supervised molecular pre-training
framework, whose pretext task is predicting the motifs based on a
given order (depth-first search or breadth-first search) on the
graph. Wang et al.5 present three molecular graph structural aug-
mentation patterns and aligns different augmentations of the same
molecule through contrastive learning. Wang et al.33 also propose a
contrastive learning framework for molecular learning, in which
not only molecular pairs but also motif pairs are sampled for
contrastive pre-training. Wang et al.31 takes into account the
chemical reaction relationships between the molecules, i.e., the sum
of molecular representations of all reactants is supposed to equal
that of all products. Despite the improvement of molecule repre-
sentation learning, previous works still fail to solve the following

problems and challenges: (1) How to preserve and capture mole-
cular structure adequately? Many recent molecular learning
methods5,28 apply graph augment to construct different views and
contrast multiple views for pre-training. However, some general
graph data augmentations (like edge modification34 or graph
diffusion35) tend to destroy the structure or attributes of molecules,
so some important chemical properties are highly possible to be
buried. In addition to the whole topology structure, the motif is also
valuable and has an important impact on the molecular properties.
Therefore, it is beneficial and challenging for molecular learning to
preserve the complete molecular structure and directly incorporate
the motifs. (2) How to fuse more comprehensive information into
molecular graph representations? With the development of
GNN36–40, growing molecular learning methods29,31 leverage
GNN as the encoder backbone, in which nodes flow information
among local neighbors, and the graph representation is obtained by
integrating all its node representations via READOUT function.
The pattern of aggregating neighborhood representations lacks a
global scale. Moreover, the READOUT operation can only transfer
information from low-order atoms to the high-order molecule, but
can not implement the interaction between them. (3) How to
design the pretext tasks of self-supervised pre-training? Self-
supervised pre-training requires design pretext tasks to optimize
the backbone model parameters. The pretext tasks affect the
transferable ability of the pre-training model to a great extent,
which determines whether the model can achieve satisfactory fine-
tuning performance in downstream tasks. Therefore, it is key for
self-supervised pre-training models to design reasonable pretext
tasks to improve transferable ability.

To resolve the aforementioned challenges, we propose a self-
supervised learning framework for molecular property predic-
tion called Hierarchical Molecular Graph Self-supervised
Learning (HiMol). Figure 1 shows the overall framework of
HiMol. HiMol consists of two major components, Hierarchical
Molecular Graph Neural network (HMGNN) and Multi-level
Self-supervised Pre-training (MSP). HMGNN presents a GNN-
based hierarchical molecule encoder, aiming at addressing the
first two challenges. To better explore the unique internal
chemical structure of the molecular graphs, we improve rules to
decompose the molecular motif structure. The molecular motif
denotes the substructure of a molecule, which contains many
chemical characteristics in general. For instance, the carboxyl
group usually indicates acidity. The motif decomposition rules
conform to chemical criteria to avoid destroying the chemical
characteristics. We add motifs into the molecular graph as
nodes to mine implicit semantic information. In addition, we
augment a graph-level node to learn molecular graph repre-
sentation through training along with normal nodes and motifs,
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Fig. 1 Illustration of HiMol. HMGNN: the input molecular graph is first decomposed into motifs, which are constructed as motif-level nodes. Further, a
graph-level node is added. The augmented graph is constructed by adding node-motif and motif-graph edges. GNN is employed to learn hierarchical node
representations on the augmented graph. MSP: encoded atom representations and molecular graph representation predict five tasks for self-supervised
pre-training.
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in place of the READOUT function. The graph-level node
collects information from all nodes and transfers the global
information back to nodes through motif-level nodes. This
circulation realizes the information interaction between differ-
ent orders, which helps the model to learn more comprehensive
representations. MSP designs multi-level pretext tasks as
supervision signals of pre-training. Specifically, MSP designs
three generative tasks that predict bond links, atom types, and
bond types with the atom representations; MSP designs two
predictive tasks that predict the number of atoms and bonds
with the molecule representation. Compared with single-signal
pre-training frameworks, multi-level pretext tasks help fuse
more molecular information into molecule representations from
diverse perspectives.

In summary, the advantages of our HiMol are as follows:

● HiMol builds a hierarchical GNN to encode molecules. It
facilitates incorporating multi-order information into the
molecule representation. To the best of our knowledge,
HiMol is the first molecular representation learning
method that encodes node-motif-graph hierarchical
information.

● HiMol constructs motifs based on chemical rules and mine
the characteristics of molecular substructures without
destroying chemical structures.

● HiMol augments a graph-level node to simulate the
molecular graph representation. It allows the molecular
graph representation to participate in the training directly
and realizes bidirectional transmission of local and global
features.

● HiMol designs multi-level self-supervised pre-training tasks
in accordance with hierarchical representations of mole-
cules. It improves the transferable potential of the pre-
training framework and helps learn more informative
molecular representations.

● HiMol outperforms the state-of-the-arts (SOTA) in the
downstream molecular property prediction tasks including
classification and regression. It demonstrates the effective-
ness of our proposed HiMol.

Results
HiMol framework. Our HiMol presents a self-supervised pre-
training framework to encode hierarchical representations of the

molecular graph. HiMol mainly includes the Hierarchical Mole-
cular Graph Neural network (HMGNN) and Multi-level Self-
supervised Pre-training (MSP).

Given the SMILES of a molecule, we first transform it into a
graph G ¼ V ; Eð Þ based on RDKIT41, where V and E denote atom
and bond sets respectively. Then we decompose G into a series of
motifs Vm ¼ V1

m;V
2
m; :::;V

k
m

� �
, k is the number of motifs. The

decomposition of motifs adds a rule on the basis of BRICS42, i.e.,
break large ring fragments and select their minimum rings as
generated motifs. All motif nodes Vm are incorporated into V,
and edges between the corresponding atoms and motifs Em are
linked and merged into E. In addition, we augment a graph-level
node Vg, meanwhile, edges between all motifs and Vg are
appended into the initial graph G. The augmented graph eG is
input into GNNs to learn the hierarchical presentations,
including atom-level representations Ha 2 RjVj ´ d , motif-level
representations Hm 2 Rk ´ d , and graph-level representation
Hg 2 Rd . In the process of MSP, the atom-level representations
are used to predict atom types, bond links, and bond types; the
graph-level representation is used to predict the number of atoms
and bonds. Cross entropy loss and smooth L1 loss are respectively
applied to optimize the atom- and molecule-level learning.

As for the fine-tuning for downstream tasks, the graph-level
representations pass through a 2-layer Multi-Layer Perceptron
(MLP) to predict molecular properties. The pre-trained GNN
weights are transferred to the fine-tuning model and continue to
be updated along with the MLP parameters under the supervision
of labels. More details about HiMol method are shown in
“Methods”.

Molecular property prediction. To evaluate the effectiveness of
HiMol for molecular property prediction, we conduct classifica-
tion and regression tasks on diverse datasets from MoleculeNet.
Table 1 reports the mean and standard deviation of ROC-AUC
(%) results on the binary classification tasks. We summarize the
observations from the results as follows. (1) Our HiMol achieves
the strongest performance on four out of six datasets. For the
remaining datasets, HiMol still reaches competitive performance
on Tox21. Although MolCLR shows remarkable results on
ClinTox, its performance on other datasets is not satisfactory. On
average, HiMol improves by 2.4% over the best-performing
baseline. The enhancement proves the superiority and effective-
ness of our hierarchical graph learning model HiMol. (2) Among

Table 1 Molecular property prediction performance on classification benchmarks.

Datasets BACE BBBP Tox21 ToxCast SIDER ClinTox Avg.

GraphSAGE 72.7 ± 3.3 67.7 ± 2.8 69.9 ± 1.1 59.1 ± 0.3 58.3 ± 0.2 52.1 ± 5.5 63.3
GPT_GNN 72.5 ± 0.8 69.3 ± 1.3 73.1 ± 0.7 59.8 ± 0.4 59.6 ± 3.5 60.4 ± 3.3 65.8
AttributeMask 80.1 ± 0.4 65.9 ± 1.3 74.6 ± 0.3 63.7 ± 0.4 58.2 ± 0.6 74.0 ± 2.3 69.4
ContextPred 77.7 ± 1.3 68.6 ± 0.9 72.7 ± 0.6 62.1 ± 0.4 58.8 ± 1.1 71.1 ± 3.6 68.5
InfoGraph 76.6 ± 1.8 68.8 ± 0.7 74.7 ± 0.4 60.8 ± 0.8 56.7 ± 0.9 72.9 ± 4.7 68.4
MoCL 75.1 ± 0.1 66.8 ± 0.1 70.9 ± 0.2 60.7 ± 0.1 61.2 ± 0.1 60.8 ± 0.1 65.9
GraphLoG 79.0 ± 0.7 65.7 ± 1.4 73.4 ± 0.3 63.4 ± 0.4 57.3 ± 2.3 72.5 ± 1.8 68.6
GraphCL 72.8 ± 5.4 69.5 ± 2.6 75.0 ± 0.3 63.2 ± 0.4 61.4 ± 1.3 78.9 ± 4.2 70.1
JOAO 72.2 ± 2.0 70.7 ± 0.6 75.5 ± 0.7 61.6 ± 0.6 61.1 ± 0.9 79.6 ± 3.7 70.1
MolCLR 76.5 ± 0.5 69.3 ± 0.5 74.2 ± 0.8 55.0 ± 1.3 56.4 ± 0.3 90.4 ± 1.7 70.3
G_Motif 81.1 ± 3.2 68.6 ± 2.5 73.3 ± 0.8 61.0 ± 0.7 59.8 ± 1.3 78.9 ± 1.4 70.5
MGSSL 79.1 ± 0.9 69.7 ± 0.9 76.5 ± 0.3 64.1 ± 0.7 61.8 ± 0.8 80.7 ± 2.1 72.0
HiMol (SMALL)a 84.6 ± 0.2 71.3 ± 0.6 76.0 ± 0.2 66.0 ± 0.2 62.5 ± 0.3 70.6 ± 2.1 71.8
HiMol (LARGE)b 84.3 ± 0.3 73.2 ± 0.8 76.2 ± 0.3 66.3 ± 0.4 61.3 ± 0.5 80.8 ± 1.4 73.7

aSMALL version implements 3-layer GIN as the GNN backbone.
b LARGE version implements 5-layer GIN as the GNN backbone.
The values in bold highlight the best performing results of each benchmark.
Means and standard deviations of test ROC-AUC (%) are reported.
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all SOTA methods, two motif-based models G_Motif and MGSSL
outperform other baselines, which indicates the capture of motif
structure play an important role in molecular graph learning.
However, they only use motif prediction as the pretext task of
pre-training, the hidden representations extracted by GNNs do
not directly incorporate motif information during the fine-tuning
for the downstream tasks. Our HiMol encodes motif structures
through the GNN backbone, which benefits the molecular
representation to better learn and predict the internal properties
of molecules during fine-tuning. (3) We give two different scales
of HiMol models, in which the layer numbers of GIN for HiMol
(SMALL) and HiMol (LARGE) are respectively 3 and 5. The
LARGE version performs slightly better, which may be explained
as the deeper GNN being able to capture more structural
information.

The regression results are shown in Table 2. According to the
recommendation of MoleculeNet, mean-absolute error (MAE) is
used as an evaluation metric for physical chemistry datasets
(ESOL, FreeSlov, and Lipophilicity) while root-mean-square error
(RMSE) is the metric for quantum mechanics datasets (QM7,
QM8, and QM9). The observations of Table 2 are summarized as
follows. The regression result of MoCL28 on QM9 is not given
since it is expensive to calculate the similarity matrix in the
process of pre-training on QM9, and no corresponding result is
given in the official paper. (1) HiMol outperforms all baselines on
five out of six datasets and reaches competitive performance on
the remaining QM8. Notably, the MAE decreases by 55.5% over
the strongest baseline on the challenging dataset QM9. (2) Similar
to the results of classification tasks, the LARGE version has a
small edge over the SMALL version in the regression tasks.

Visualization of molecular representations. To exhibit intui-
tively the learned representations by HiMol, we utilize t-SNE43 to
project them to a two-dimensional space and different colors to
distinguish molecular property labels. Note that we simply
visualize the fine-tuned molecular presentations in the test set,
which do not incorporate groundtruth. From Fig. 2, molecular
presentations are grouped in line with their labels on both clas-
sification and regression tasks. For example, in Fig. 2a, the Class
label represents the binary results of binding for BACE-1 inhi-
bitors. Molecules labeled 0 and 1 are grouped on the top left and
bottom right, respectively. Similarly, in Fig. 2b, molecules have
increasingly high exp values from the top left to bottom right.

Moreover, in Fig. 2c, d, it can be observed that the visualized
presentations have a high degree of consistency in terms of two
important properties of molecules on QM9. The visualization in
Fig. 2 demonstrates that our HiMol can extract the internal
properties of molecules. Similar conclusions can be observed in
other datasets (see Supplementary Fig. 1).

To further demonstrate the effectiveness of our pre-training
framework, we visualize the molecular representations fine-tuned
in downstream tasks without pre-training in Supplementary
Fig. 2. Compared with Fig. 2, the visualization results without
pre-training are chaotic in terms of molecules with different
properties. The pre-training improves the performance of the
HMGNN encoder and is beneficial to learning more chemical
properties in downstream tasks.

Molecular representation similarity ranking. To further inves-
tigate the semantic information contained in the pre-trained
molecular representations via HiMol, we evaluate the similarity
between the query molecule and other molecules and draw the
top-five most similar molecules. The cosine similarity between the
query molecule q and the candidate molecule c is calculated as
follows:

simðq; cÞ ¼
Hq

g �Hc
g

Hq
g

��� ��� Hc
g

��� ��� ð1Þ

where Hq
g 2 Rd and Hc

g 2 Rd are the graph representations of
the query molecule and candidate molecule, respectively. Then
the similarity of all candidate molecules is ranked and the top-five
molecules of the query ZINC9452931 are displayed in Fig. 3.
From the figure, we can observe that the five molecules have
similar structures and functional groups with the query. Specifi-
cally, the top-five similar molecules possess all atom types of the
query, i.e., C, H, N, O, S. Moreover, the structure that two rings
share a common edge exists in all molecules. Top@1 molecule not
only have similar ring structures with the query, but also the same
chain structures like NC(=O) and C(=O). The molecular
representation similarity ranking experiments imply that our
framework HiMol can learn molecular representation with che-
mical semantic information. Meanwhile, encoding the motifs is
conducive to identifying molecular substructures like functional
groups and rings. More results about other query molecules are
shown in Supplementary Fig. 3.

Table 2 Molecular property prediction performance on regression benchmarks.

Datasets ESOL FreeSolv Lipophilicity QM7 QM8 QM9

Metrics RMSE RMSE RMSE MAE MAE MAE

GraphSAGE 2.575 5.051 1.212 164.062 0.0388 11.178
GPT_GNN 1.612 5.284 0.820 229.053 0.0204 7.976
AttributeMask 1.439 8.062 0.784 261.588 0.0188 13.461
ContextPred 1.430 8.616 0.838 243.551 0.0205 16.886
InfoGraph 1.380 31.118 0.926 292.601 0.0192 12.350
MoCL 1.425 3.233 0.998 198.215 0.0903 NA
GraphLoG 1.390 4.515 0.857 274.071 0.0193 11.484
GraphCL 1.265 5.569 0.782 285.967 0.0199 9.773
JOAO 1.355 4.280 0.771 270.839 0.0206 22.507
MolCLR 1.333 3.285 0.720 104.184 0.0187 23.226
G_Motif 1.286 4.432 0.779 222.957 0.0203 11.065
MGSSL 1.346 2.980 0.751 155.913 0.0198 21.538
HiMol(SMALL)a 0.938 3.215 0.709 96.776 0.0196 3.770
HiMol(LARGE)b 0.833 2.283 0.708 91.501 0.0199 3.243

aSMALL version implements 3-layer GIN as the GNN backbone.
bLARGE version implements 5-layer GIN as the GNN backbone.
The values in bold highlight the best performing results of each benchmark.
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Fine-tuning mode analysis. To investigate the impact of different
fine-tuning strategies on the model prediction tasks, we explore
freezing mode and full fine-tuning mode. They both inherit the
pre-trained weights of the hierarchical molecular graph neural
network. The freezing mode freezes the parameters of HMGNN
and only updates the weights of downstream classifiers, while the
full fine-tuning mode trains all weights of HMGNN and classi-
fiers in an end-to-end manner during fine-tuning. In addition, we
evaluate HiMol without pre-training and vanilla GIN38, which are
directly trained through supervised downstream tasks. Table 3
shows two different versions of all methods, where SMALL ver-
sion and LARGE version encode molecular graphs by 3-layer and
5-layer GNNs, respectively. From the results, we can observe that:
(1) Full fine-tuning mode presents more advantage over freeze
mode, which indicates that our proposed HMGNN plays a
decisive role for prediction tasks; (2) Himol without pre-training
exhibits better performance to GIN, which demonstrates that
HMGNN has the ability to extract more abundant structural
information; (3) HiMol achieves better performance after pre-
training, which verifies that our proposed multi-level self-super-
vised pre-training strategy can effectively train model parameters
and transfer knowledge to downstream data.

Figure 4 further displays the train and test classification ROC-
AUC curves of the four aforementioned modes. It can be observed
that the full HiMol can converge faster to optimum performance
than othermethods. Besides, the pre-trainedmethods (HiMol and its
freeze mode) have better stability than the other two modes without

pre-training in terms of training and testing curves, indicating that
our pre-training framework boosts the stability of fine-tuning.

Ablation studies on pre-training. To analyze the effectiveness of
each part of our proposed HiMol framework, we conduct ablation
experiments on HMGNN and MSP during the pre-training
process. Figure 5 illustrates the ablation experimental results of
HMGNN and MSP.

In Fig. 5a, we compare HiMol with two pre-training versions.
HMGNN w/o motif-level denotes that molecular graphs only
augment graph-level nodes and node-graph edges, without decom-
posing motifs. HMGNN w/o graph-level obtains graph-level
representations through performing mean pooling to motif-level
presentations. We can observe the following insights: (1) The
performance of HiMol removing motifs becomes worse on all
benchmarks, which implies the important role of encodingmotifs for
molecular representation learning. HiMol decomposes motifs to
learn hierarchical representations, which is beneficial to learn more
molecular structural characteristics and functions. (2) Replacing the
graph-level node representation with the squeezed representation via
graph pooling also makes the molecular property prediction
performance slightly decrease. Augmenting a graph-level node is
superior to the mean-pooling function, since it can indirectly learn
multi-order features through the motif node, and can transfer the
global information to all atom nodes during training. Mutually, atom
nodes not only integrate local neighbor information but also capture
substructural and global graph information. These multi-level

(a) (b)

(c) (d)

Fig. 2 Visualization of molecular representations obtained by our HiMol on the downstream test set. a BACE (Class): color represents binary labels of
binding results for BACE-1 inhibitors. b Lipophilicity (exp): color represents octanol/water distribution coefficient. c QM9 (homo): color represents highest
occupied molecular orbital energy (homo) of molecules. d QM9 (lumo): color represents lowest unoccupied molecular orbital energy (lumo) of molecules.
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interactions between normal nodes and the graph-level node
improve the learning performance of HMGNN.

The ablation versions for MSP are shown in Fig. 5b. MSP w/o
atom-level contains only graph-level pretext tasks in the pre-
training (the number of atoms and bonds). Similarly, MSP w/o
graph-level contains only atom-level pretext tasks (bond links,
atom types, and bond types). MSP w/o α simply sums all the loss
values, removing the α weight parameter to balance. It can be
observed that the combination of multi-level self-supervised tasks
promotes the comprehensiveness transfer ability of pre-training
compared with a single pretext task. In addition, the learnable
weight α adjusts the importance of the loss of different parts,
which can better coordinate the relationship between multi-level
tasks to improve the performance of pre-training.

Discussion
Motif encoding. First of all, we propose to encode the con-
structed motifs while learning the atom representations. HiMol

mines the substructure of molecules through motifs. There are
many existing molecular representation learning methods29,30

considering motif structure. They generally decompose molecules
in a large-scale database into motifs and build a motif dictionary,
then motif prediction serves as self-supervised pretext tasks in the
pre-training process of molecular representation learning. How-
ever, these methods have some disadvantages: (1) When the
constructed motif dictionary is large, the computation of motif
prediction is expensive. (2) Motifs as the self-supervised signal
only, are difficult to be incorporated by hidden representations
directly. We encode motifs contained in each molecule in the
encoder part, which directly integrates the motif structure into
the hidden representations. Moreover, the augmentation of
motif-level nodes better captures the affiliation relationship
between atoms and motifs.

Graph encoding. In addition to motif-level nodes, we also aug-
ment a graph-level node into the molecular graph, which

Query
C[C@@H]1CCc2c(sc(NC(=O)COC(=O)CC

c3c[nH]c4ccccc34)c2C#N)C1

Top@1
COc1ccccc1CNC(=O)CCC(=O)N1CC

N(c2nc3cccnc3s2)CC1

Top@2
CS(=O)(=O)[N-]c1ccccc1CNc1nc(-

c2ccncc2)nc2c1CCC2

Top@3
N=C(/N=C(\[O-

])[C@H](Sc1ccccc1)c1ccccc1)Nc1n
c2ccccc2o1

Top@4
CCCSC1=NC(=O)[C@H]2C(=N1)NC(C)
=C(C(=O)OCC)[C@H]2c1ccc(Cl)cc1

Top@5
CCOC(=O)c1cnn([C@H]2CCCN(C(=
O)[C@@H]3SCCc4ccccc43)C2)c1

Fig. 3 Visualization of the top-five molecules ranked by molecular representation similarity for the query ZINC9452931. SMILES for all molecules
are given.

Table 3 Classification performance of different fine-tuning modes.

Methods Version BACE BBBP Tox21 ToxCast SIDER ClinTox

GIN SMALL 72.6 70.2 72.2 62.7 57.5 60.7
LARGE 73.4 67.7 73.8 62.5 56.2 60.8

HiMol (no pre-train) SMALL 83.3 67.5 74.1 64.4 58.7 60.0
LARGE 79.6 68.4 74.7 63.2 62.1 62.6

HiMol (freeze) SMALL 77.9 59.2 68.1 60.9 61.1 66.0
LARGE 72.6 60.3 65.4 59.3 61.5 67.6

HiMol SMALLa 84.6 71.3 76.0 66.0 62.5 70.6
LARGEb 84.3 73.2 76.2 66.3 61.3 80.8

aSMALL version implements 3-layer GIN as the GNN backbone.
bLARGE version implements 5-layer GIN as the GNN backbone.
The values in bold highlight the best performing results of each benchmark.
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participates in the aggregation process to extract molecule
representation. Most molecular learning methods use vanilla
GNNs as the backbones and squeeze node representations into
graph representation through the READOUT function, i.e., graph
pooling methods like MAX, SUM, and MEAN. The process of
GNNs is introduced in Supplementary Note 1. It is convenient to
handle varying sizes of graph data, but the graph-level repre-
sentation fails to be involved in learning. BERT model11,44 pro-
poses to attach a token to the sequence, whose representation is
regarded as the sequence-level feature. Referring to BERT,
Graphormer45 adds a virtual node into the graph, which is linked
and updated with all nodes, and the feature of the virtual node is
the graph representation. Inspired by the success of the afore-
mentioned works, we augment a graph-level node to extract the
molecular graph representation via participating in aggregation

and updating with all atoms. Nevertheless, related methods only
connect the graph-level node with normal nodes, they are not
conducive to capturing subgraph structure. To integrate motif
nodes, we connect graph-level nodes with motif nodes to achieve
hierarchical aggregation. Compared with the READOUT, our
HiMol implements the training and updating of graph nodes and
realizes the interaction with multi-order nodes after incorporating
molecular motif structure.

Conclusion
In this paper, we propose Hierarchical Molecular Graph Self-
supervised Learning (HiMol) to learn molecular presentations.
Specifically, we design Hierarchical Molecular Graph Neural
Network (HMGNN) backbone to encode node-motif-graph
hierarchical representations, which mines chemical semantic
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Fig. 4 Training and testing classification ROC-AUC curves of different fine-tuning modes. Solid lines are training curves; dashed lines are testing curves.
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Fig. 5 Ablation effect of HiMol pre-training on classification benchmarks. a The performance of HMGNN with different ablations during pre-training.
b The performance of MSP with different ablations during pre-training.
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information implied at motifs and realizes the interaction of
multi-order features. Furthermore, we build multi-level mole-
cular-dependent tasks as self-supervised signals, capturing more
comprehensive information from multiple perspectives. Extensive
molecular property prediction experiments demonstrate that
HiMol shows great improvements over SOTA methods.

The superior performance of molecular representations reflects
the potential of our HiMol framework, and there are interesting
and promising future works on the basis of HiMol. (1) Com-
bining molecular features with different dimensions, in addition
to 2D graphs. (2) Simulating the generative process of molecules
and extending our model to molecule generation and
optimization tasks.

Methods
Hierarchical Molecular Graph Neural network. We propose a Hierarchical
Molecular Graph Neural network (HMGNN) to encode and represent molecular
graphs, which mainly contains three parts: (1) motif construction; (2) augmented
graph construction; (3) hierarchical representation encoder.

First, we decompose each input molecule graph into a group of motifs. BRICS
algorithm is a traditional approach to fragment molecule graphs, which designs
chemical rules to break bonds. Specifically, BRICS structurally decomposes
molecules into multiple functional fragments according to whether bonds can be
combined. However, BRICS splits molecules based on limited chemical rules,
resulting in coarse granularity of decomposition. After BRICS decomposition, some
large motifs still contain a few more general and functional substructures to be
partitioned. Therefore, we add a decomposition rule on the basis of BRICS, i.e.,
decompose more than one ring substructures connected by common chemical
bonds into minimum rings. Figure 6 illustrates the process of motif construction.

All obtained motifs are added as nodes Vm to the molecular graph. Naturally,
node-motif edges Em are added between each motif node and all the atom nodes it
covers. Since the final output is the molecular graph representation, we construct a
graph-level node Vg into the molecular graph and link it to all motif nodes to form
motif-graph edges Eg. The final augmented graph is represented as:

eG ¼ eV ; eE� �
; eV ¼ ½V ;Vm;Vg�; eE ¼ ½E; Em; Eg� ð2Þ

On the constructed graph eG, we employ GNN to encode hierarchical molecular
representations. Graph Isomorphism Network (GIN)38 is the most widely used to
encode molecular graph representation. Inspired by this, we apply GIN as the
backbone model of our HiMol, the aggregation pattern of lth layer is given as
follows:

hlv ¼ MLPl
a hl�1

v þ ∑
u2N vð Þ

hl�1
v þMLPl

b Xb
uv

� �� � !
ð3Þ

where MLPl
a and MLPl

b represent MLP for atom and bond feature transitions at
l-layer, respectively, Xb

uv denotes the bond feature of uv, and h0v ¼ Xa
v is the input

atom feature of v. The detailed input features of atoms and bonds are shown in
Supplementary Table 1. Different from other baselines, the initial molecular
features of our HiMol contain degrees of atom nodes and whether bonds are in
rings, which contain more molecular structural information. Our proposed
HMGNN can encode molecular graphs to obtain multi-level representations
simultaneously, including atom-level, motif-level, and molecule-level
representations. The learned molecule-level representation can be directly used for
downstream tasks, without the READOUT operation.

Multi-level Self-supervised Pre-training. After encoding the hierarchical repre-
sentations through HMGNN, we design generative and predictive pretext tasks to
perform Multi-level Self-supervised Pre-training (MSP). The types of self-
supervised learning corresponding to different pretext tasks are described in
Supplementary Note 2.

For atom-level representations, we design three generative tasks including bond
links, atom types, and bond types, aiming at reconstructing graph structure and
attributes. Specifically, three 2-layer MLPs with ReLU activation function project
atom-level representations to predict three generative tasks, respectively. Cross
entropy loss is employed to optimize the atom-level representations as follows:

Llink ¼ � ∑
vi ;vj2V

yij log ŷij þ ð1� yijÞ logð1� ŷijÞ ð4Þ

Latom type ¼ � 1
jV j ∑v2V ∑

Katom

k¼1
yv;k log ŷv;k ð5Þ

Lbond type ¼ � 1
jEj ∑e2E ∑

Kbond

k¼1
ye;k log ŷe;k ð6Þ

where yij represents the link between vi and vj, yv,k= 1 represents the atom type of
node v is k, and ye,k= 1 represents the bond type of edge e is k. Their
corresponding ŷ are the predicted values. Katom and Kbond are the number of atom
types and bond types.

For graph-level representations, two predictive tasks on the overall properties of
molecules are performed, i.e., the number of atoms and bonds. Similarly, two
respective 2-layer MLPs with softplus activation function are applied to predict the
graph-level tasks. Based on SmoothL1 loss, the loss of predictive tasks are given in
Equations (7) and (8).

Latom num ¼ 0:5 ´ ya � ŷa
� �2

; if j ya � ŷa
� �j<1

j ya � ŷa
� �j � 0:5; if j ya � ŷa

� �j≥ 1
(

ð7Þ

Lbond num ¼ 0:5 ´ yb � ŷb
� �2

; if j yb � ŷb
� �j<1

j yb � ŷb
� �j � 0:5; if j yb � ŷb

� �j≥ 1
(

ð8Þ

where ya and yb are the number of atoms and bonds, respectively; ŷ are predicted
values. Supplementary Method describes the transformation process from the
representation H to the predicted values y. Finally, we add a learnable vector weight
α ¼ α1; α2; α3; α4; α5

� �
normalized by softmax function to balance several losses.

The overall objective is calculated as follows:

L ¼ α1Llink þ α2Latom type þ α3Lbond type þ α4Latom num þ α5Lbond num ð9Þ

Datasets. For the pre-training of HiMol, we utilize sampled 250K unlabeled
molecules from the ZINC1546 dataset. To evaluate the effectiveness of HiMol, we
conduct molecular property prediction experiments on 12 datasets from
MoleculeNet47, including six classification task datasets and six regression task
datasets. All downstream datasets are split into 80/10/10% for train/validation/test
through scaffold-split, which is split in accordance with the molecular structures
and provides more challenge for prediction tasks than random-split. The statistical
data of all datasets are summarized in Supplementary Table 2.

Baselines. To evaluate the effectiveness of our proposed HiMol, different types of
self-supervised learning SOTA are conducted as benchmarks. We compare diverse
universal graph learning methods, including GraphSAGE39, GPT_GNN48,
AttributeMask49, ContextPred49, InfoGraph50, GraphLoG26, GraphCL25, and
JOAO51. Furthermore, we compare several methods designed specifically for
molecular graphs, i.e., MoCL28, MolCLR5, G_Motif29, and MGSSL30. The detailed
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Fig. 6 Overview of motif construction. The construction process consists of three steps: (1) A given molecule graph is decomposed according to BRICS.
(2) The molecule is further decomposed through our additional rule. (3) Decomposed motifs are constructed as motif-level nodes.
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description of baselines is demonstrated in Supplementary Note 3, and the SSL type
is summarized in Supplementary Table 3.

Experimental configuration. All experiments are conducted on the Linux server
with Nvidia GeForce GTX 1080 Ti GPU and Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz. In the pre-training phase, the HiMol run 100 epochs using the Adam
optimizer with a learning rate of 0.001. We train the LARGE and SMALL versions,
with 3-layer and 5-layer GIN as the HMGNN backbone. The dropout rate for the
GIN backbone is set to 0.5. The batch size is set as 32 and the number of workers
for dataloader is 8. The hidden representations of all levels are 512-dimension.

In the fine-tuning phrase, we implement a 2-layer MLP with ELU activation
function as the classifier. The weights of both pre-trained HMGNN and the
classifier are optimized by the Adam optimizer with respective learning rates
ranging from 1e-4 to 1e-3. For each downstream task, we fine-tune for 100 epochs
and report the average test results of five runs. The batch size is 32 and the number
of workers is 4. The embedding dimension is 512, the same as that in the pre-
training phase. The dropout rate is adjusted in the range [0.5, 0.7]. The parameter
settings for each dataset during the fine-tuning process are reported in
Supplementary Table 4.

For the purpose of fairness, we pre-train all the baselines on the same dataset
ZINC15 according to their official codes, except MoCL28. MoCL does not
implement transfer learning, and it is computationally expensive to calculate the
similarity matrix of ZINC15 dataset during pre-training. Therefore, we adopt the
same manner as the official work: pre-training on each downstream dataset and
then fine-tuning on the same dataset for molecular property prediction tasks. All
baselines maintain the same split proportion and manner on the downstream
datasets.

Data availability
All related data in this paper are public. The ZINC dataset for pre-training can be
downloaded from https://github.com/zaixizhang/MGSSL/tree/main/motif_based_
pretrain/data/zinc as described in MGSSL30. All downstream datasets for fine-tuning can
be downloaded from MoleculeNet website https://github.com/deepchem/deepchem/tree/
master/deepchem/molnet/load_function.

Code availability
The implementation of HiMol is publicly available at https://github.com/ZangXuan/
HiMol.
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