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A digital twin of electrical tomography for
quantitative multiphase flow imaging
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Multiphase flow is ubiquitous in nature, industry and research, and accurate flow imaging is
critical to understanding this complex phenomenon. Electrical tomography (ET) is a pro-
mising technique for multiphase flow visualization and characterization which provides a non-
invasive and non-radiative way to unravel the internal physical properties at high temporal
resolution. However, existing ET-based multiphase flow imaging methods are inadequate for
quantitative imaging of multiphase flows due to inversion errors and limited ground truth data
of fluid phases distribution. Here we report a digital twin (DT) framework of ET to address the
challenges of real-time quantitative multiphase flow imaging. The proposed DT framework,
building upon a synergistic integration of 3D field coupling simulation, model-based deep
learning, and edge computing, allows ET to dynamically learn the flow features in the virtual
space and implement the model in the physical system, thus providing excellent resolution
and accuracy. The proposed DT framework is demonstrated using electrical capacitance
tomography (ECT) of a gas-liquid two-phase flow. It can be readily extended to a broader
range of tomography modalities, scenarios, and scales in biomedical, energy, and aerospace
applications.
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ultiphase flow, as a transient and dynamic system
M subject to highly nonlinear and hierarchical multi-scale

features, is prevalent in the natural environment,
industrial processes and scientific research!~3. Representative
phenomena include blood flow in blood vessels?, gas-liquid flow
in post-combustion carbon capture processes’, oil-gas flow in the
energy industry®, and micro-fluidic systems in biomedical
research’. A critical challenge in this field is the quantitative
visualization and characterization of the multiphase flow, which is
vital to the fundamental study of the underlying fluid mechanics,
the prediction and control of the flow response, process modeling,
and the safe operation of industrial facilities®. Although some
imaging techniques, e.g., X-ray tomography!0-12 and Magnetic
Resonance Imaging (MRI)13, can be used to provide quantitative
flow images, their viability is severely constrained by their limited
versatility, scalability, high cost, and non-negligible radiological
hazard. Electrical Tomography (ET), e.g., Electrical Capacitance
Tomography (ECT) and Electrical Impedance Tomography
(EIT), is considered a promising alternative technology for mul-
tiphase flow visualization and characterization!41, It can provide
an agile, noninvasive and nonradioactive way to unravel the time-
varying distribution of the internal physical properties at high
temporal resolution thus facilitating the study of dynamic flow
behavior at different scales and under extreme conditions!*16.

Despite advances in sensors, system design, and inverse pro-
blem theory, existing ET techniques are still inadequate for
quantitative imaging of multiphase flows!7-18, The underlying
reason is the ill-posed and ill-conditioned nature of the ET
inverse problem!®, which leads to inevitable inversion errors.
Another issue lies in the limited availability of ground truth data
of fluid phases distribution for quantitative image evaluation and
validation?0. This is due to the highly complex nature of multi-
phase flows, which systematically prevents the time-history
recording of accurate flow profiles.

Emerging deep learning and data-driven methods have the
potential to resolve the nonlinear ET inverse problem?!-22, Several
learning-based imaging models, e.g., end-to-end learning?324,
model-based deep learning?>2°, and unsupervised learning?’-8,
have been studied for high-resolution ET image reconstruction.
The dataset plays a central role in these learning-based imaging
approaches and determines the network’s accuracy and general-
ization ability. Since the ground truth of multiphase flow profiles
cannot be readily obtained in practice, the datasets of existing
learning-based approaches are mainly constructed from static
phantom data. Such static datasets are far from actual flow dis-
tributions and contain little information on dynamic flow beha-
viors, making learning-based models unfit to be transferred into
realistic multiphase flow imaging scenarios.

We here propose a Digital Twin (DT) framework of ET to
achieve quantitative imaging of multiphase flows by encapsulat-
ing dynamic 3D field-coupling simulation, model-based deep
learning, and edge computing. The DT framework is summarized
in Fig. 1. The physical entity includes the testing section of a
multiphase flow facility (Fig. 1a), the ET system (Fig. 1b), and the
edge computer (Fig. 1c). A three-dimensional Fluid-Electrostatic
field Coupling Model (3D-FECM) is developed as the digital
representation of the physical multiphase flow imaging system.
With 3D-FECM, the dynamic behavior of the real multiphase
flows can be modeled, and instantaneous virtual ET measure-
ments can be obtained simultaneously. By conducting dynamic
coupling simulations, a virtual dataset consisting of tomographic
data and corresponding flow profiles is generated (Fig. 1f). The
framework also comprises a lightweight deep neural network
(Fig. 1g), i.e., Deep Back Projection (DBP) (see Methods for
details), trained based on the dataset and then implemented in the

edge computer for quantitative multiphase flow imaging in the
physical platform.

The DT framework provides an efficient way for ET to learn
the dynamic flow features in the virtual space and enable quan-
titative multiphase flow imaging in the physical space. The DT
framework is demonstrated on ECT and gas-liquid flow in this
work but can be readily extended to other electrical tomography
modalities, e.g., EIT or magnetic induction tomography, different
multiphase flows, e.g., liquid-solid flow, and different scales. By
adapting the coupling simulation model to specific cases, the DT
framework also can be applied to other multiphase flow imaging
techniques. This study provides a paradigm for multiphase flow
measurement, extends the limit of ET, and creates an effective
avenue for developing artificial intelligence-based quantitative ET
techniques.

Results

We first created a three-dimensional Fluid-Electrostatic field
Coupling Model (3D-FECM) (see Methods for details of 3D-
FECM and Fig. 2b) as the digital representation of the testing
section of a pilot-scale multiphase flow facility (see Methods for
multiphase flow facility details). In the multiphase flow facility,
single-phase flows of gas (air) and liquid (white oil) are separately
supplied and controlled to generate gas-liquid flows with different
volumetric concentrations (see Fig. 2a). Similarly, in the virtual
space, dynamic flows of gas and liquid are separately regulated to
simulate various gas-liquid flows. Figure 2c shows examples of
typical sequential gas-liquid flows with 0.2 s intervals generated
by the 3D-FECM. The pipe is initially filled with liquid. Gas-
liquid flows are gradually formed in the horizontal pipe with the
gas and liquid injection and then flow through the outlet. Addi-
tional representative gas-liquid flows generated from virtual space
are presented in Supplementary Movies S1 and S2.

By coupling the fluid and electrostatic fields, the specific elec-
tric potential distribution within the virtual ECT sensor is
formed, and 66 independent interelectrode capacitances can be
obtained during the dynamic simulation process following the
ECT measurement principle?’ (see Fig. 2d and Supplementary
Fig. S2). To imitate the Signal-Noise Ratio (SNR) of the real-
world ECT system, which is around 60dB3°, three levels of
additive noise (SNR 60, 50, and 40 dB) are added to the virtual
capacitances when reconstructing the cross-section liquid phase
distributions in the sensor region. Referring to the actual working
conditions of the multiphase flow testing facility, we conduct
large-scale virtual experiments and synthesize a simulation
dataset consisting of 12,362 samples of gas-liquid flow distribu-
tions and corresponding ECT measurements; see Methods for
details of virtual multiphase flow data generation. Several exam-
ples of gas-liquid flow distributions and related images recon-
structed using the conventional algorithm are shown in
Supplementary Figs. S3-4.

We develop a lightweight deep neural network (i.e., Deep Back
Projection, DBP) and train the network using the simulation
dataset (see Methods for details of DBP). We implement a series
of virtual tests (using 50 dB noisy data) to verify the performance
of the trained DBP for quantitative gas-liquid flow imaging. We
calculate the 2D liquid phase distributions from the 3D liquid
phase distributions of the ECT sensing region by averaging voxel-
to-voxel along the axial direction of the sensor, and use them as
the ground truth (see Fig. 3a). The Structural Similarity Index
Measure (SSIM)3! and the Root Mean Square Error (RMSE)32 are
adopted as the metrics to evaluate the reconstructed flow
images quantitatively. Figure 3a presents two representative
sets of sequential gas-liquid flows generated by 3D-FECM and
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Fig. 1 The digital twin framework of electrical tomography for quantitative multiphase flow imaging. a The testing section of the multiphase flow facility.
The system/feature data are captured via the sensors installed in the testing section. b The electrical tomography system. ¢ The edge computer (i.e.,
NVIDIA Jetson Nano) implements the Al-based quantitative imaging model. d The 3D geometrical model of the testing section and the 12-electrode
tomography sensor. e Schematic of the 3D fluid-electric field-coupling simulation based on the model in d. f lllustration of the generated virtual
tomographic sensing data and corresponding dynamic flow distributions within the sensing region. g The model-based deep neural network, Deep Back
Projection (DBP), for quantitative flow imaging. DBP is trained based on the dataset in f and implemented in ¢. h The edge computer's output generates
quantitative flow images and key parameters estimation based on the output of b.

corresponding image reconstruction results using DBP when the
pipe is initially filled with liquid and gas, respectively. The
reconstructed cross-section images from both sets of sequential
flows are close to the ground truth, with the SSIM higher than
0.997 and show RMSE lower than 0.014. We also implement
virtual gas-liquid transient flow measurement with high temporal
resolution (200 frames per second, 0.005s intervals) to further
examine the performance of DBP. Figure 3b shows the image
reconstruction results for the set of virtual sequential gas-liquid
flows in Fig. 3a (ii), corresponding dynamic imaging results are
presented in Supplementary Movies S3.

Additionally, we also uniformly deploy eight virtual ECT
sensors on the periphery of the pipeline to image the gas-liquid
flows along the whole horizontal pipe section (see Supplementary
Fig. S6). The goal is to increase the diversity of flow patterns in
the virtual dataset. The image reconstruction results in Fig. 3 and
Supplementary Fig. S9 show superior quality with the SSIM
higher than 0.989 and RMSE lower than 0.024, indicating that the
trained DBP can achieve accurate imaging of a wide variety of
complex dynamic gas-liquid flows in the virtual space, which is
not possible with the conventional ECT approach (see Supple-
mentary Figs. S7-9 for comparison).

We conduct gas-liquid dynamic flow imaging experiments on
the pilot-scale multiphase flow facility as a case study to evaluate
the performance of our DT framework (see Methods and Sup-
plementary Table S1 for detailed experimental setups/test matrix).
Supplementary Movies S4 presents gas-liquid flows captured by
cameras under three experimental conditions, respectively. Some
representative flows for the three experimental conditions
are shown in Fig. 4a. The pipe is initially filled with liquid. With
the gas and liquid injection, stratified gas-liquid flow is gradually

presented in the horizontal section and flows through the ECT
sensor. When the gas volume flow rate rises from 20.0 to
100.0 m3h~! and the liquid volume flow rate drops from 5.0 to
2.5m3h~1, the liquid volumetric concentration of the gas-liquid
flow in the testing section of the pipe decreases notably. Figure 4b
shows the continuous imaging results of the DT framework for
each experimental condition. All the tomographic images present
stratified flow, and the trend of fluid concentration for different
conditions is in good agreement with that from the experimental
flow observations. The experiment consists of three stable and
two intermediate stages (see Fig. 4b(iv)). According to the
tomographic data, the liquid volumetric concentration of the gas-
liquid flow at each stage is 0.999 £0.003, 0.645+0.097, and
0.221 £0.113 (mean + standard deviation), respectively. The gas-
liquid flows at intermediate stages contain more abundant
dynamic features than the stable stages that are primarily strati-
fied flows. Two sets of time-stacked tomographic images at
intermediate stages are selected and presented in Fig. 4b (v) and
(vi), respectively. The flow transitions show similarity compared
with simulations, with the Liquid Volumetric Concentration
fluctuating within 0.988 to 0.730, and 0.735 to 0.306, respectively.
We conduct gas-liquid dynamic flow imaging experiments in
virtual space, in line with the physical experimental setup, as
validation test case to further verify the reliability of 3D-FECM.
Gas Volume Fraction (GVF) is one of the critical parameters
describing a gas-liquid flow system, and we calculate the mean
value of GVF for each working condition by averaging the con-
tinuous measurements in the quasi-static stage. Supplementary
Figure S11 compares the GVF results between the simulation and
experiment. We can see that the simulation results agree with the
experiment across each working condition, and capture the
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Fig. 2 Three-dimensional coupling simulation of gas-liquid flows. a Physical gas-liquid flows with different volumetric concentrations present in the
testing section of the multiphase flow facility. b The schematic illustration of the three-dimensional Fluid-Electrostatic field Coupling Model (3D-FECM).
Fluid field and electrostatic field are considered to simulate Electrical Capacitance Tomography (ECT) measurements and dynamic gas-liquid flows.

¢ Sequential gas-liquid two-phase flows generated by the 3D-FECM. d An example of the interelectrode capacitance values obtained by the coupling

simulation under a stratified flow.

temporal evolution of the mixture throughout its transient
response to varying working conditions.

It is worth pointing out that the ground truth of dynamic
multiphase flow profiles in operational flow facilities is in most
cases unavailable. As a result, quantitative evaluation of the
reconstructed flow images has remained a long-standing yet
unsolved challenge. The DT framework presented here addresses
this very problem bringing evidence of the capability to visualize
and quantify static stratified gas-liquid flows in virtual and phy-
sical spaces. We also compare the real-world results with virtual-
space results to provide an indicator of the feasibility and per-
formance of the DT framework in the physical world from a
quantitative perspective. Figure 5a, b shows the imaging results
from the virtual and physical spaces, respectively. We observe
that the tomographic images of the virtual static stratified flows
and real-world flows are very close to actual distributions. The
SSIMs of the images for the virtual static flows are higher than

0.969, and those for the real-world static flows are larger than
0.801, indicating that the DT framework can accurately visualize
the gas-liquid flows both in virtual and physical spaces. From the
continuous imaging results of gas-liquid flows in the physical
facility (see Fig. 5b), we also see that the SSIM result for each
working condition is 0.931 +0.023, 0.939 + 0.030, 0.963 +0.019,
0.969 £0.016 (mean *standard deviation), respectively. The
relative standard uncertainty of the imaging results is better than
3.19%, indicating superior measurement stability and high
repeatability of the DT framework.

Discussion

In this study, we introduce the DT concept to multiphase flow
imaging systems. We propose a DT framework for ET and
demonstrate that it can effectively learn the multiphase flow
features in virtual space and provide high resolution and accuracy
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Fig. 3 Quantitative imaging of virtual gas-liquid flows by Deep Back Projection (DBP) with 50 dB Signal-Noise Ratio (SNR). a Two representative sets
of sequential gas-liquid flows generated by three-dimensional Fluid-Electrostatic field Coupling Model (3D-FECM) and corresponding image reconstruction
results of DBP. For the sequential gas-liquid flows in (i), the pipe is initially filled with liquid. For the sequential gas-liquid flows in (ii), the pipe is initially
filled with gas. 3D dynamic liquid phase distributions in the ECT sensing region can be converted to the 2D volume-averaged liquid phase distributions as
the ground truth (see (iii)). The cross-section images reconstructed by DBP for the gas-liquid flows in (iii) are presented in (iv). b Quantitative imaging of
virtual gas-liquid transient flow with high temporal resolution (200 frames per second). (v) The authentic liquid phase distributions for evaluating the

performance of image reconstruction. (vi) The images reconstructed by DBP for the gas-liquid flows in (v). The cross-section images in (vi) are a set of
representative images selected from the continuous reconstruction results. (vii) The Structural Similarity Index Measure (SSIM) and Root Mean Square

Error (RMSE) of the DBP results in (vi).

of multiphase flow imaging in physical space. Despite the
superiority of our DT framework, several limitations exist due to
current technological bottlenecks and simplistic modeling
assumptions.

In virtual space, we leverage 3D-FECM to build the digital
representation of the physical multiphase flow imaging system.
Coupling the fluid and electrical fields allows simultaneous
simulation of dynamic multiphase flows and imaging sensors.

However, it is noteworthy that the fundamentals and mathema-
tical treatment of multiphase flow modeling are still the focus of
active research33. Real-world multiphase flows are among the
most complex fluid systems due to the presence of sharp density
and velocity gradients across the phases, the strong sensitivity to
domain geometrical features and error magnification in the
operative conditions. Because of this, achieving a perfect match
between the simulation and reality remains an open challenge in
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Fig. 4 Tomographic images of gas-liquid flows in the pilot-scale multiphase flow facility under different experimental conditions. In this experiment,
three experimental conditions are selected for testing (see Methods for more details). a Flow profiles captured by the camera. At the initial stage of the
experiment, the pipe is filled with liquid (see (i)). The gas and liquid flow into the testing section with volume flow rates of 20.0 and 5.0 m3/h, respectively.
The gas-liquid two-phase flow with high liquid volumetric concentration is then formed (see (ii)). When the volume flow rate of the gas rises to 100.0 m3/h
and that of the liquid drops to 2.5 m3/h, the gas-liquid flow with low liquid volumetric concentration is formed (see iii)). b Tomographic images obtained from
our Digital Twin (DT) framework. (iv) Tomographic images and liquid volumetric concentration variations of the gas-liquid flows in a. Tomographic images in
(v) and (vi) show two sets of representative images selected from the time-stacked cross-sectional reconstruction results in (iv).

the multiphase flow modeling community. To mitigate this issue,
instead of focusing on the accuracy of the 3D-FECM model to
replicate physical multiphase flows, we resort to generating a
variety of gas-liquid flows which carry abundant dynamic features
that cover a wide range of complex flow conditions in the flow
facility. Another limitation of the virtual model is that, although
only the testing section is modeled, it still takes extensive time to
generate 3D virtual flow and tomographic measurements for each
working condition. This is detrimental to the real-time perfor-
mance of the DT framework. Model optimization to significantly
reduce computational cost and leveraging more powerful com-
puting hardware could be a potential solution.

In physical space, we applied our DT framework to visualize
dynamic gas-liquid flows in the laboratory-scale multiphase flow

facility. However, it was challenging to obtain the ground truth of
dynamic gas-liquid flow profiles that could be used for quanti-
tative performance evaluation. Alternatively, we quantitatively
evaluated the imaging results of static stratified flows and com-
pared the dynamic imaging results with those captured by
high-speed cameras. Static imaging results reveal that the DT
framework can visualize real-world gas-liquid flows with high
accuracy and excellent repeatability. Future improvements will be
to benchmark the experimental performance by incorporating
other advanced imaging techniques, e.g., X-ray tomography and
MRI, and to compare DT results with these high-precision ima-
ging techniques. Nevertheless, this will involve multi-sensors
integration and multi-signal fusion, and the implementation will
be complicated and challenging.
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Fig. 5 Evaluation of static stratified gas-liquid flow imaging in virtual and physical spaces. a Imaging static stratified gas-liquid flows in virtual space by
Deep Back Projection (DBP) with 50 dB data. (i) Virtual static gas-liquid flows and corresponding image reconstruction results of DBP. (ii) The Structural
Similarity Index Measure (SSIM) and Root Mean Square Error (RMSE) of DBP results in (i). b Imaging static stratified gas-liquid flows in physical space
using DBP. (iii) Real-world static gas-liquid flows and corresponding image reconstruction results of DBP. (iv) The SSIM of the DBP results in (iii). (v) The
standard uncertainty of our Digital Twin framework for imaging the real-world static gas-liquid flows in (iii).

It is also noteworthy that the focus of this work is the overall
DT framework rather than the learning-based algorithm for ECT
image reconstruction. We demonstrate that our DT framework
can achieve superior performance even when using simple neural
architectures like DBP. We also point out that employing dedi-
cated and more specialized neural architectures can potentially
lead to a better performance at the cost of a larger training dataset
and a more complex training strategy.

In summary, the proposed DT framework for ET utilizes 3D
field-coupling simulation, model-based deep learning, and edge
computing to enable precise flow profiles imaging with low-
cost, nonradioactive, and noninvasive tomography techniques.
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We demonstrated substantial improvements of DT-powered
ET over conventional ET both virtually and in a pilot-scale
multiphase flow facility under various gas-liquid flow condi-
tions. Our DT framework can be trained efficiently and flexibly
in the virtual space and be readily implemented in the physical
space to provide quantitative and stable imaging of gas-liquid
flows, representing a step change compared to the state of
the art. The framework is in principle generalizable to
various imaging techniques, and emerging real-time simula-
tion/data sketching techniques could realistically propel our
DT framework towards widespread multiphase flow imaging
applications.
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Methods

Multiphase flow facility and experiment design. The testing section of a pilot-
scale multiphase flow facility (see Supplementary Fig. S1) at the Multiphase Flow
Engineering Laboratory of the Tsinghua International Graduate School is adopted
as a case study. The facility consists of a multiphase flow separator, a gas storage
tank, gas and liquid single-phase flow sections, the mixing section, and the control
system. In this study, the gas-liquid two-phase flow is considered. The working gas
and liquid are air (permittivity 1.0, density 1.3 kg m—3) and white oil (permittivity
2.18, density 879 kg m—3), respectively. The oil is separately supplied and pumped
into the flow pipe, then blended with the gas in operation. The mixture is trans-
ported through the gas-liquid flow testing section and returned to the separator for
circulating utilization. A 12-electrode ECT sensor with a transparent window for
visual observation is installed in the horizontal mixing section (see Supplementary
Fig. S1c). The testing section has an internal diameter of 50 mm, in which gas-
liquid two-phase flows with different volumetric concentrations can be formed by
manipulating the air and white oil volume flow rates. During the experiment, the
working pressure in the testing section is set to 0.6 MPa and the experimental
temperature is about 33 °C. The experimental conditions are listed in Supple-
mentary Table S1, where the volume flow rate of white oil varies from 5.0 to
2.5m3h~1, and the volume flow rate of air ranges from 20.0 to 100.0 m3h~1,

3D field-coupling simulation. We created a three-dimensional Fluid-Electrostatic
field Coupling Model (3D-FECM) to duplicate the testing section of the flow
facility. 3D field-coupling simulation was performed using the commercial software
COMSOL Multiphysics and Matlab. The model contains the fluid field interface to
generate the gas-liquid flow data and an electrostatic field interface to simulate the
12-electrode ECT sensor. Supplementary Figure S2 shows the flowchart of the 3D
field-coupling simulation. We can simultaneously obtain the dynamic permittivity
distribution under various flow conditions and corresponding capacitance mea-
surements from the virtual ECT sensor by coupling the fluid field and the
electrostatic field.

For the fluid field interface, we employ the laminar two-phase flow, level set
method>* to track the moving interface between the gas and liquid phases. The gas
and liquid phases are air and white oil, respectively. We impose the velocity inlet
and pressure outlet boundary conditions to avoid convergence difficulties. We
select the suppress backflow to prevent fluid from entering the domain through the
outlet boundary. The gas-liquid two-phase flow is set as incompressible flow. In
line with the experimental setup, the temperature of the simulation environment is
set as 33 °C, the dynamic viscosity of the gas and liquid is set as 1.81E-5 and
0.02 Pa.s, respectively, and the density of the gas and liquid is set as 1.3 and
879 kg m~3, respectively.

We apply the Poisson equation3” to determine the electric potential distribution
for the electrostatic field interface. We then use the Wiener Upper Bound
formula3® to evaluate the equivalent permittivity of the gas-liquid mixture. The
relative permittivity of the pipe, gas, and liquid is set as 2.6, 1.0, and 2.18,
respectively. All the 66 nonredundant interelectrode capacitances are collected for
image reconstruction.

Virtual multiphase flow dataset generation. To replicate the real scenarios of the
gas-liquid flow testing facility, we initially apply the incompressible Navier-Stokes
equations” with gravity to simulate gas-liquid two-phase flows in the horizontal
section. The dynamic gas and liquid single-phase flows are separately supplied and
controlled. Gas-liquid two-phase flow data with different volumetric concentra-
tions are generated by regulating the inlet velocities perpendicular to the entrance
surfaces. The inlet liquid velocity varies from 0.071 to 0.708 m s 1, and the inlet gas
velocity varies from 0.236 to 2.362m s~ L. To cover a wide range of volumetric
concentrations, two initial conditions are set. One is that the pipe is filled with
liquid at the initial stage, and the other is that the pipe is filled with gas at the initial
stage. We conduct additional virtual dynamic experiments to generate gas-liquid
two-phase flows in the microgravity environment to obtain more abundant flow
regimes for the machine learning model training. Supplementary Table S2 gives the
virtual dynamic experimental matrix. A working condition for the virtual static
experiment is also added to generate static stratified gas-liquid flow with the liquid
volumetric concentration ranging from 0 to 1. We ran 74 working conditions and
collected 12,362 virtual samples containing ECT measurements and phase
distributions.

DBP for quantitative flow imaging. We found that the conventional Linear Back
Projection (LBP) algorithm?® is the most effective in reconstructing dynamic flow
profiles than iterative algorithms. We therefore further refine the LBP results with
machine learning. DBP is a model-based deep learning algorithm designed to
quantitatively image the flow profiles (see Supplementary Fig. S5 for the network
structure). Here, we consider the commonly used ECT model?’, i.e.,

A=Sg (1

where A denotes the normalized capacitance measurement vector; S is the Jacobian
matrix; and g represents the normalized permittivity distribution within the Region
of Interest (ROI).

Reconstruction of the flow distribution with DBP involves two steps. First, the
normalized measurement vector A is mapped into a coarse flow distribution g
based on the LBP algorithm?®. Then, a modified UNet?® is applied to refine the
LBP result and produce a more accurate image g ;.

DBP is implemented in Pytorch. The Adam optimizer” is used to update
network parameters. The hyperparameters of Adam are set as: §; = 0.9, 8, = 0.999,
€ =107, weight decay = 0. The initial learning rate is 0.001, which decays every 2
epochs with a factor of 1.111. The simulation data is divided into three groups, i.e.,
the training, validation, and testing sets. The training set includes 10,505 samples
(62 different flow conditions at normal time resolution in the dynamic simulation
and 89 different flow conditions in the static simulation). The validation set
includes 1680 samples (10 different flow conditions at normal time resolution in
the dynamic simulation). The testing set includes 1380 samples (one flow condition
at normal time resolution, three flow conditions at high time resolution in the
dynamic simulation, and nine different flow conditions in the static simulation).
All data are augmented by 3 noise levels (i.e., 40, 50, and 60 dB). We select mean
square error as the loss function. The batch size and the number of epochs are set
to 25 and 80, respectively. The whole training takes about 3 h on three Nvidia
Quadro P5000 GPUs. The network with the least validation loss is selected as our
final model, which can achieve 0.996 + 0.012 (mean * standard deviation) for SSIM,
0.005 + 0.008 (mean + standard deviation) for RMSE, and 40.218 +1.701
(mean =+ standard deviation) for Peak Signal to Noise Ratio (PSNR) on the whole
testing set.

Al-powered tomography system. The trained DBP is implemented in the AI-
powered electrical tomography system in the physical space. We use ECT to
demonstrate the construction of the Al-power tomography system. However, the
architecture could be easily extended to other electrical tomography modalities.
The Al-powered ECT system is composed of a 32-channel ECT hardware3%-40, an
edge AI computer (NVIDIA Jetson Nano), and a Visual Tomography (VT) soft-
ware integrating the trained DBP model for real-time quantitative flow profile
reconstruction and key parameter prediction (see Supplementary Fig. S10 for the
system architecture). The ECT hardware is interfaced with the Jetson Nano
through a USB2.0 port. The VT software developed via Python is implemented on
Jetson Nano for ECT measurement control, data collection, image reconstruction,
and visualization. It also provides an interface to update the trained DBP model
dynamically and remotely.

Data availability

We have uploaded the virtual multiphase flow dataset to the Edinburgh DataShare,
accessible at: https://doi.org/10.7488/ds/3501. The data that support the findings of this
study are available from the corresponding author upon reasonable request.

Code availability
Code to replicate this research can be available from the corresponding author upon
reasonable request.
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