
Research soft ware is l ike the
tower-building game Jenga — tools
atop tools atop tools. When develop-
ers tweak their individual pieces, this
can change the function of the soft-

ware that depends on them, potentially alter-
ing results — or causing the software to fail.

Version 3.6.0 of the R programming lan-
guage, for instance, introduced a replacement
algorithm for generating random numbers.
This and the older algorithm both work, but
not in the same way. “If you ran the same code
with an older version of R and a newer version
of R and it was using any function that needed
to generate a random number, you would
end up getting different results,” says Tiffany
Timbers, a data scientist at the University of
British Columbia in Vancouver, Canada.

Among other things, that kind of var-
iability can complicate collaboration
(see ‘Environmental testing’). In 2020,

Mine Çetinkaya-Rundel was working with
another author on a statistics textbook, using
R and a formatting language called R Mark-
down to calculate numbers, create figures
and format the final document. “We wanted
to make sure that we were using the same ver-
sions,” says Çetinkaya-Rundel, a statistician at
Duke University in Durham, North Carolina,
“and also that when we re-render the book,
we’re rendering it with a given version of the
packages.” If not, the two authors could have
generated slightly different manuscripts.

To address that challenge, they turned to
the R package renv, one of a small group of
tools that help developers and researchers to
manage their computational environments;
other options include venv and virtualenv for
Python, and conda, a language-agnostic tool.
Most are command-line utilities, although renv
is tightly integrated with the RStudio Desktop
graphical programming environment. All can

help researchers to ensure that their code is
reproducible, reusable, documented and
shareable.

Sleight of hand
C. Titus Brown, a bioinformatician at the
University of California, Davis, has 187 conda
environments on his laptop. Most are one-offs,
used to test new tools or to illustrate a point
during lectures. His day-to-day work mostly
takes place in a development environment that
includes a specific version of Python and other
programming tools.

Some tasks, however, require a change of
computational scenery. For instance, Brown
writes blog posts in Markdown, which he ren-
ders into HTML, the standard markup language
for web pages. But the code that performs that
step doesn’t work well with newer versions of
a crucial software library, and older versions
conflict with his development tools. To isolate

A TRICK TO SIMPLIFY
SCIENTIFIC COMPUTING
Computational environments and the tools to manage them
can help researchers to deliver code that is reproducible,
documented and shareable. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

212 | Nature | Vol 617 | 4 May 2023

Work / Technology & tools

©

2023

Springer

Nature

Limited.

All

rights

reserved. ©

2023

Springer

Nature

Limited.

All

rights

reserved.

the problem, Brown created a separate envi-
ronment. “I just fixed the version to something
really old that still works, and I run [the render-
ing software] there,” he says.

A conda environment is a computational
sleight-of-hand, says Johannes Köster, a
computer scientist at the University of
Duisburg-Essen in Germany, who founded a
bioinformatics-focused software repository
called Bioconda. “Basically, it’s just modifying
your system path — the place where your sys-
tem searches for executable [applications].”
You might have multiple versions of a tool
installed, but when conda activates a particu-
lar environment, your computer can only see
the one you want.

Computational environments offer several
benefits, says Timbers. One is reproducibility
— the ability to analyse the same data with the
same software on the same computing infra-
structure to get the same results.

“It can be very frustrating, tracing down the
differences between outputs across different
computers,” says Ben Marwick, an archae-
ologist at the University of Washington in
Seattle. Some research projects take years to
complete, he notes. And although Marwick
prefers the newest libraries, his colleagues
don’t always upgrade at the same pace. Renv
ensures that he and his collaborators always
run their project codes in the same way. The
resulting environment-description file can
be version-controlled and shared on GitHub.
Collaborators can recreate the environment
using the command renv::restore()

Conda is a command-line tool that
both creates environments and installs
software into them. To create a new envi-
ronment called my_env pinned to a spe-
cific version of Python, for instance, use
conda create --name my_env python=3.9

Both R and conda allow users to install their
own tools rather than having to ask system
administrators to do it for them. “You don’t
need root privileges,” says Rob Patro, a compu-
tational biologist at the University of Maryland
in College Park. This is a useful feature when
working on shared computing resources.

Environment managers also make software
installation easier. Scientific software is often
released as source code, which might need to
be compiled, configured and installed in a
specific location. It might have a network of
dependencies, written in multiple program-
ming languages, that must be installed in a
particular order. Sometimes, says bioinforma-
tician Fredrik Boulund at the Karolinska Insti-
tute in Stockholm, the process can be beyond
users’ skills. “That completely changed when
solutions like conda entered the scene,” he
says. “Installing a complex set of dependencies
is simply reduced to asking conda to create
an environment according to an environment
specification file.”

For the Galaxy project — an open-source

framework for reproducible data analysis
— those features were a key reason for choos-
ing conda as the project’s software installation
manager. Bioinformatician Björn Grüning,
who runs the European Galaxy server at the
University of Freiburg in Germany, says that
the Galaxy community started searching for
a cohesive tool-installation strategy in around
2015 because its existing, manual approach was
unsustainable. “Conda ticked all our require-
ment boxes,” Grüning says. It doesn’t need
root privileges; it is programming-language
agnostic; and it uses human-readable
package recipes that are easy to understand
and maintain. Today, there are more than
9,000 bioinformatics tools available to Galaxy
users through the Bioconda channel.

Early starts
Perhaps the biggest benefit to environments,
however, is isolation: environments enable
researchers to explore new or updated tools
while knowing that their code will still run.

Elana Fertig, a statistician at Johns Hopkins
University in Baltimore, Maryland, describes
herself as “lax” when it comes to environments:
“For me, everything goes in one environment.”
But larger environments are harder to use,

because the environment manager has to
resolve a larger network of dependencies to
install new tools. (Conda is notorious for poor
performance with large environments, but a
drop-in resolver called mamba accelerates
the process.) Instead, Fertig suggests that
her students use one environment per project.

Indeed, most researchers contacted for
this article recommend creating environ-
ments to accommodate specific workflows
or projects — and to do so early on. “Start your
project with a package-management solution
in mind,” says Joshua Shapiro, senior data sci-
entist at the Childhood Cancer Data Lab for
Alex’s Lemonade Stand Foundation, based in
Wynnewood, Pennsylvania. “It has the poten-
tial to save a lot of headaches down the line.”

Tommy Tang, director of computational
biology at Immunitas Therapeutics, a biotech-
nology company in Waltham, Massachusetts,
uses dedicated environments for different
computational tasks — processing data from
RNA sequencing or working in Google Cloud,
for instance.

Users of the Snakemake and Nextflow com-
putational workflow managers can even direct
those tools to execute each step in a separate
conda environment, says Köster, who leads
Snakemake development. “Make them as fine-
grained and as single-purpose as possible,” he
advises. Besides being easier to maintain, he
explains, small environments are also more
transparent. “People who want to understand
what the analysis actually did immediately see
what software stack was used for which step.”

Limitations
Still, environments can’t do everything. Tools
written in languages such as C, Perl and Fortran
can be hard to encapsulate into environments,
and dependency differences can make envi-
ronments difficult to port across operating
systems. In that case, users can try software
containers, such as those from Docker and
Singularity.

Containers, which essentially package a
tool with its underlying operating system, are
larger and more complicated than environ-
ments, but are more portable. They are also
easier to share, because although an environ-
ment can hold thousands of files, a container
has only one. On high-performance systems
in which jobs can be run in parallel across hun-
dreds of computing cores, transferring many
small files can affect performance.

Computational environments, says
Timbers, are “the forgotten child” of repro-
ducibility. Journals increasingly ask for code
and data alongside manuscripts, but full repro-
ducibility requires knowing the environment
in which they were run. “It’s the elephant in the
room,” she says.

Jeffrey M. Perkel is technology editor at
Nature.

ENVIRONMENTAL
TESTING
An example of how variable computing
environments can hinder collaboration.

Suppose you have the latest versions of R
and Python installed, but your collaborator
has been slower to upgrade. They want
to share a Python script with you, and you
have an R program you want them to use.
Will the code work in each others’ hands?

Between Python 2 and Python 3, the
‘print’ command that outputs text to
the screen changed. The directive print
“hello, world!” is valid in Python 2, but
Python 3 requires parentheses — print
(“hello, world!”). Similarly, before R 4.0, the
function that creates spreadsheet-like data
tables treated text as discrete ‘factors’ by
default, whereas later versions do not.

To highlight these differences, we
created scripts and environments for
Python 2.7, Python 3.11, R 3.6 and R 4.2
(see go.nature.com/4tirjm7). Following the
instructions (see go.nature.com/4tnd5ke),
install conda. Then, open a terminal
window, run the set-up script and execute
run.sh. You should see the code working
correctly in one environment but not
in the other. For instance, although the
R script behaves as intended in R 4.2 — it
changes the gender of a study subject — it
does something unexpected (and issues a
warning) in R 3.6.

Nature | Vol 617 | 4 May 2023 | 213

©

2023

Springer

Nature

Limited.

All

rights

reserved. ©

2023

Springer

Nature

Limited.

All

rights

reserved.

