
Research soft ware is  l ike the 
tower-building game Jenga — tools 
atop tools atop tools. When develop-
ers tweak their individual pieces, this 
can change the function of the soft-

ware that depends on them, potentially alter-
ing results — or causing the software to fail. 

Version 3.6.0 of the R programming lan-
guage, for instance, introduced a replacement 
algorithm for generating random numbers. 
This and the older algorithm both work, but 
not in the same way. “If you ran the same code 
with an older version of R and a newer version 
of R and it was using any function that needed 
to generate a random number, you would 
end up getting different results,” says Tiffany 
Timbers, a data scientist at the University of 
British Columbia in Vancouver, Canada. 

Among other things, that kind of var-
iability can complicate collaboration 
(see ‘Environmental testing’). In 2020, 

Mine Çetinkaya-Rundel was working with 
another author on a statistics textbook, using 
R and a formatting language called R Mark-
down to calculate numbers, create figures 
and format the final document. “We wanted 
to make sure that we were using the same ver-
sions,” says Çetinkaya-Rundel, a statistician at 
Duke University in Durham, North Carolina, 
“and also that when we re-render the book, 
we’re rendering it with a given version of the 
packages.” If not, the two authors could have 
generated slightly different manuscripts. 

To address that challenge, they turned to 
the R package renv, one of a small group of 
tools that help developers and researchers to 
manage their computational environments; 
other options include venv and virtualenv for 
Python, and conda, a language-agnostic tool. 
Most are command-line utilities, although renv 
is tightly integrated with the RStudio Desktop 
graphical programming environment. All can 

help researchers to ensure that their code is 
reproducible, reusable, documented and 
shareable. 

Sleight of hand
C. Titus Brown, a bioinformatician at the 
University of California, Davis, has 187 conda 
environments on his laptop. Most are one-offs, 
used to test new tools or to illustrate a point 
during lectures. His day-to-day work mostly 
takes place in a development environment that 
includes a specific version of Python and other 
programming tools. 

Some tasks, however, require a change of 
computational scenery. For instance, Brown 
writes blog posts in Markdown, which he ren-
ders into HTML, the standard markup language 
for web pages. But the code that performs that 
step doesn’t work well with newer versions of 
a crucial software library, and older versions 
conflict with his development tools. To isolate 
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the problem, Brown created a separate envi-
ronment. “I just fixed the version to something 
really old that still works, and I run [the render-
ing software] there,” he says. 

A conda environment is a computational 
sleight-of-hand, says Johannes Köster, a 
computer scientist at the University of 
Duisburg-Essen in Germany, who founded a 
bioinformatics-focused software repository 
called Bioconda. “Basically, it’s just modifying 
your system path — the place where your sys-
tem searches for executable [applications].” 
You might have multiple versions of a tool 
installed, but when conda activates a particu-
lar environment, your computer can only see 
the one you want. 

Computational environments offer several 
benefits, says Timbers. One is reproducibility 
— the ability to analyse the same data with the 
same software on the same computing infra-
structure to get the same results. 

“It can be very frustrating, tracing down the 
differences between outputs across different 
computers,” says Ben Marwick, an archae-
ologist at the University of Washington in 
Seattle. Some research projects take years to 
complete, he notes. And although Marwick 
prefers the newest libraries, his colleagues 
don’t always upgrade at the same pace. Renv 
ensures that he and his collaborators always 
run their project codes in the same way. The 
resulting environment-description file can 
be version-controlled and shared on GitHub. 
Collaborators can recreate the environment 
using the command renv::restore() 

Conda is a command-line tool that 
both creates environments and installs 
software into them. To create a new envi-
ronment called my_env pinned to a spe-
cific version of Python, for instance, use 
conda create --name my_env python=3.9 

Both R and conda allow users to install their 
own tools rather than having to ask system 
administrators to do it for them. “You don’t 
need root privileges,” says Rob Patro, a compu-
tational biologist at the University of Maryland 
in College Park. This is a useful feature when 
working on shared computing resources. 

Environment managers also make software 
installation easier. Scientific software is often 
released as source code, which might need to 
be compiled, configured and installed in a 
specific location. It might have a network of 
dependencies, written in multiple program-
ming languages, that must be installed in a 
particular order. Sometimes, says bioinforma-
tician Fredrik Boulund at the Karolinska Insti-
tute in Stockholm, the process can be beyond 
users’ skills. “That completely changed when 
solutions like conda entered the scene,” he 
says. “Installing a complex set of dependencies 
is simply reduced to asking conda to create 
an environment according to an environment 
specification file.” 

For the Galaxy project — an open-source 

framework for reproducible data analysis 
— those features were a key reason for choos-
ing conda as the project’s software installation 
manager. Bioinformatician Björn Grüning, 
who runs the European Galaxy server at the 
University of Freiburg in Germany, says that 
the Galaxy community started searching for 
a cohesive tool-installation strategy in around 
2015 because its existing, manual approach was 
unsustainable. “Conda ticked all our require-
ment boxes,” Grüning says. It doesn’t need 
root privileges; it is programming-language 
agnostic; and it uses human-readable 
package recipes that are easy to understand 
and maintain. Today, there are more than 
9,000 bioinformatics tools available to Galaxy 
users through the Bioconda channel.

Early starts
Perhaps the biggest benefit to environments, 
however, is isolation: environments enable 
researchers to explore new or updated tools 
while knowing that their code will still run. 

Elana Fertig, a statistician at Johns Hopkins 
University in Baltimore, Maryland, describes 
herself as “lax” when it comes to environments: 
“For me, everything goes in one environment.” 
But larger environments are harder to use, 

because the environment manager has to 
resolve a larger network of dependencies to 
install new tools. (Conda is notorious for poor 
performance with large environments, but a 
drop-in resolver called mamba accelerates 
the process.) Instead, Fertig suggests that 
her students use one environment per project. 

Indeed, most researchers contacted for 
this article recommend creating environ-
ments to accommodate specific workflows 
or projects — and to do so early on. “Start your 
project with a package-management solution 
in mind,” says Joshua Shapiro, senior data sci-
entist at the Childhood Cancer Data Lab for 
Alex’s Lemonade Stand Foundation, based in 
Wynnewood, Pennsylvania. “It has the poten-
tial to save a lot of headaches down the line.” 

Tommy Tang, director of computational 
biology at Immunitas Therapeutics, a biotech-
nology company in Waltham, Massachusetts, 
uses dedicated environments for different 
computational tasks — processing data from 
RNA sequencing or working in Google Cloud, 
for instance. 

Users of the Snakemake and Nextflow com-
putational workflow managers can even direct 
those tools to execute each step in a separate 
conda environment, says Köster, who leads 
Snakemake development. “Make them as fine-
grained and as single-purpose as possible,” he 
advises. Besides being easier to maintain, he 
explains, small environments are also more 
transparent. “People who want to understand 
what the analysis actually did immediately see 
what software stack was used for which step.” 

Limitations
Still, environments can’t do everything. Tools 
written in languages such as C, Perl and Fortran 
can be hard to encapsulate into environments, 
and dependency differences can make envi-
ronments difficult to port across operating 
systems. In that case, users can try software 
containers, such as those from Docker and 
Singularity. 

Containers, which essentially package a 
tool with its underlying operating system, are 
larger and more complicated than environ-
ments, but are more portable. They are also 
easier to share, because although an environ-
ment can hold thousands of files, a container 
has only one. On high-performance systems 
in which jobs can be run in parallel across hun-
dreds of computing cores, transferring many 
small files can affect performance. 

Computational environments, says 
Timbers, are “the forgotten child” of repro-
ducibility. Journals increasingly ask for code 
and data alongside manuscripts, but full repro-
ducibility requires knowing the environment 
in which they were run. “It’s the elephant in the 
room,” she says. 

Jeffrey M. Perkel is technology editor at 
Nature. 

ENVIRONMENTAL 
TESTING
An example of how variable computing 
environments can hinder collaboration.

Suppose you have the latest versions of R 
and Python installed, but your collaborator 
has been slower to upgrade. They want 
to share a Python script with you, and you 
have an R program you want them to use. 
Will the code work in each others’ hands?

Between Python 2 and Python 3, the 
‘print’ command that outputs text to 
the screen changed. The directive print 
“hello, world!” is valid in Python 2, but 
Python 3 requires parentheses — print 
(“hello, world!”). Similarly, before R 4.0, the 
function that creates spreadsheet-like data 
tables treated text as discrete ‘factors’ by 
default, whereas later versions do not. 

To highlight these differences, we 
created scripts and environments for 
Python 2.7, Python 3.11, R 3.6 and R 4.2 
(see go.nature.com/4tirjm7). Following the 
instructions (see go.nature.com/4tnd5ke), 
install conda. Then, open a terminal 
window, run the set-up script and execute 
run.sh. You should see the code working 
correctly in one environment but not 
in the other. For instance, although the 
R script behaves as intended in R 4.2 — it 
changes the gender of a study subject — it 
does something unexpected (and issues a 
warning) in R 3.6. 
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