
When it comes to dissecting how a 
cell’s regulatory circuits are wired, 
some researchers turn to their 
pipettes. Emily Miraldi turns to 
her keyboard. 

A computational and systems biologist 
at Cincinnati Children’s Hospital in Ohio, 
Miraldi uses mathematics to understand 
what makes cell systems tick, and to predict 
how they respond to their environment. As 
a postdoc, she worked with computational 

biologist Richard Bonneau and immunologist 
Dan Littman at New York University in New 
York City. In 2006, Bonneau and his colleagues 
built a computational modelling tool called 
the Inferelator1 that uses gene-expression data 
to deduce how DNA-binding proteins called 
transcription factors control the expression 
of particular genes. Researchers can use the 
resulting network maps to track the flow of 
information through the cell, identifying 
— and perhaps reverse-engineering — the 

regulators that control key processes. 
But inferring the structure of these 

circuits is complicated. Even the simplest 
gene-expression data can be explained by 
multiple network architectures, and inter-
actions that seem direct might not be. Tran-
scription factors often work in concert, are 
modified by enzymes and can act tens or hun-
dreds of thousands of DNA bases away from 
their target gene. Although some 1,600 tran-
scription factors have been identified in the 

GENE CIRCUITS 
MADE SIMPLE
Tools that untangle a cell’s wiring let researchers find 
key regulators of behaviour. By Jeffrey M. Perkel
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A representation of the gene regulatory network of the bacterium Escherichia coli, showing the interactions that control gene expression.
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human genome, information on the exact 
sequences (or ‘motifs’) where they bind to DNA 
is lacking for many. Furthermore, genomic 
DNA in the cell is packaged with proteins in 
a complex called chromatin, which can stop 
transcription factors binding. 

To resolve some of these issues, Bonneau’s 
team folded in another type of experimental 
data to improve the Inferelator. They used 
information from a technique that reveals 
which regions of chromatin in the genome are 
unpackaged and available for transcription- 
factor binding. The method is called ATAC-seq 
— assay for transposase-accessible chromatin 
with high-throughput sequencing. By reconfig-
uring the software to use these data, the team 
were able to work out which genes changed 
expression in tandem, and which transcription- 
factor DNA-binding motifs were available to 
influence that expression. 

In what Bonneau, now at Genentech 
Research and Early Development in South San 
Francisco, California, calls a “tour de force” 
study2, Miraldi and her colleagues used this 
updated Inferelator to trace networks com-
prising thousands of transcription factors 
in a class of white blood cells called type 17 
T-helper cells. They found that the transcrip-
tion factors STAT3 and FOXB1 in these cells are 
key regulators of genes that are implicated in 
inflammatory bowel disease. 

“This paper was the first time where we 
were able to validate that if you start with just 
RNA-seq and ATAC-seq [data], you can get 
a more accurate gene-regulatory network 
relative to gene-expression data alone,” 
Miraldi says. 

Today, the Inferelator is just one of a 
fast-growing collection of software tools for 
gene-regulatory network (GRN) inference, 
whether at the level of populations or individ-
ual cells. These might rely on gene-expression 
data alone, but some exploit other data types 
or simulate systematic disruption of regula-
tory networks. Others are helping to tease out 
the sequences that direct transcription-factor 
activity. If you want to predict the behaviour 
of cells, Miraldi says, “you need to understand 
how they’re wired”. 

A matter of inference
Researchers can tease out regulatory net-
works experimentally. Using methods such 
as chromatin immunoprecipitation (which 
uses antibodies to identify where and when 
transcription factors bind to DNA) and 
gene-expression analysis, for instance, 
researchers can correlate transcription-factor 
binding with gene expression, and identify 
the DNA regions where they act. From there, 
they can build networks to explain the data. 
But these methods are labour-intensive, and 
might require antibodies that either haven’t 
been made or are of poor quality. They tend 
to focus on a single protein at a time. And the 

cell type of interest might be unavailable or 
impractical to obtain in the laboratory. GRN 
inference allows researchers to circumvent 
these issues by mining gene-expression data 
to deduce these networks computationally. 
The resulting networks can then inform exper-
imental design, which in turn can refine com-
putational models.

The simplest approaches to GRN inference 
rely on correlation — the tendency of the 
expression of pairs of genes to rise and fall in 
sync. “If I see that from cell to cell these two 
genes always go up and down together, they 
always correlate, then there is a high chance 
that there is a regulatory relationship between 
them,” says Xiuwei Zhang, a computational 
scientist at Georgia Institute of Technology 
in Atlanta, who has built her own GRN-infer-
ence tools.

Another GRN-inference tool ,called 
SCENIC+, exploits machine learning, says 
Seppe De Winter, a PhD student at the Catho-
lic University of Leuven (KU Leuven) in Bel-
gium, who helped to develop it. Alternatively, 
researchers can reduce GRNs to mathematical 
equations. In January, Joanna Handzlik, then 

a computational-science graduate student 
at the University of North Dakota in Grand 
Forks, used a modelling approach called gene 
circuits — a system of coupled differential 
equations, each of which describes a single 
gene — to deduce the regulatory relationships 
between a dozen transcription factors and tar-
get genes involved in blood-cell maturation3. 

Because such models are computationally 
intensive, researchers tend to simplify them 
by incorporating fewer proteins or reducing 
them to Boolean systems, in which each inter-
action is either on or off. Instead, Handzlik 
threw computational power at the problem. 
She ran 100 computer-processing cores on 
the university’s high-performance computing 
cluster in parallel for days, solving the equa-
tions tens of millions of times until she arrived 
at a set of parameters for her model that mir-
rored experimental data. Then, Handzlik sim-
ulated what would happen if she eliminated 
or reduced the expression of either of two 
transcription factors, called PU.1 and GATA1. 
“We saw, remarkably, that the model actually 
agreed with what would be experimentally 
expected,” she says. 

‘A-ha’ moment
Aviv Regev, a pioneer in single-cell biology who 
is now executive vice-president of Genentech 
Research and Early Development, has spent 

most of her career pursuing GRNs. One of the 
motivations that has driven her team to design 
ever-more-subtle methods for processing and 
profiling single cells, she says, “was derived 
from how important that topic was to me”. 

Suppose, she says, that you perturb a sin-
gle gene in a population of cells. By observing 
which genes are affected, you can model a reg-
ulatory circuit. But to confirm your hypoth-
esis, you might need to disrupt dozens or 
even hundreds of other genes. That quickly 
becomes impractical, she says — but not at the 
single-cell level, where each cell is its own data 
set. “We thought that in single-cell genomics 
we would be able to do something that we were 
simply not able to do in bulk.” 

Regev and her team applied single-cell meth-
ods and new computational approaches to 
study how a sample of 18 specialized immune 
cells from bone marrow, called dendritic cells, 
respond to a component of bacterial cell walls. 
Those 18 cells, they say, actually represented 
two populations. Focusing on the larger sub-
population, they discovered that although all 
were stimulated with the bacterial molecule at 
the same time, not all had responded to the 
same extent. Exploiting that subtle variation 
between the cells, the team deduced a simple 
related circuit that marked the transcription 
factors STAT2 and IRF7 as ‘master regulators’ 
of antiviral activity4. “You can do quite a lot 
just from this variation between single cells,” 
she says. 

For Anthony Gitter, a computational biolo-
gist at the University of Wisconsin–Madison, 
Regev’s work represented an ‘a-ha’ moment. By 
examining each single-cell profile for clues to 
their relative position along a cell-differentia-
tion pathway, he saw, it would be possible to 
organize them chronologically in ‘pseudotime’. 

“Pseudotime allows you to order cells so you 
can see which causes precede effects,” Gitter 
says. It attempts to “estimate a time point for 
each cell by using the expression measure-
ments of that one cell relative to the others”. 
Researchers can then use those pseudotime 
estimates to build GRNs. 

Gitter’s team created a tool called SINGE 
based on this idea5, and applied it to mouse 
embryonic stem cells as they developed into 
endodermal cells. It worked, but the results, he 
says, were underwhelming. “There still seems 
to be some fundamental limit on how much you 
can learn about gene regulation if the only data 
you’re going to look at is gene expression.” The 
problem, says Jason Buenrostro, co-director of 
the Gene Regulation Observatory at the Broad 
Institute of Harvard and MIT in Cambridge, 
Massachusetts, is that gene-expression data 
alone cannot sufficiently ‘constrain’ the num-
ber of possible networks that could explain the 
data. For instance, two correlated genes could 
be regulated by the same transcription factor, 
or by two different ones regulated by a third, 
distinct transcription factor. 

“We saw that the model 
actually agreed with what 
would be experimentally 
expected.”
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In a 2020 study, computer scientist 
T. M. Murali at Virginia Tech in Blacksburg and 
his team described a computational pipeline 
called BEELINE, which they used to test a dozen 
GRN-inference methods based on single-cell 
RNA sequencing against gold-standard and 
synthetic data sets6. “Most methods do a 
relatively poor job of inference,” Murali says, 
at least when it comes to deducing interac-
tions — performing about as well as a random 
predictor, he notes. The solution, he says, is 
to include extra data. 

Buenrostro’s team, for instance, has devel-
oped a computational framework called FigR. 
It uses data from single-cell RNA sequencing 
and ATAC-seq to integrate expression of tran-
scription factors and their target genes with 
identification of protein-binding motifs and 
data on chromatin accessibility. “When we did 
that, we started to see really nicely that a lot of 
transcription factors that were co-expressed 
with our favourite gene don’t actually have 
sequence enriched at our favourite gene.” 
This means there’s no place for the transcrip-
tion factor to bind and regulate the gene, 
so “they get removed from the analysis”, he 
says. “We also see lots of sequences that are 
enriched, but the transcription factor is not 
even expressed.”

The latest version of the Inferelator also 
makes use of single-cell ATAC-seq data. But 
it further constrains that information by 

considering transcription-factor activity. 
“A transcription factor’s expression level 

doesn’t indicate anything about what it’s 
doing at the time that you observe it from 
sequencing data,” explains Claudia Skok Gibbs, 
who led the development of the updated ver-
sion7. That’s because some of them act with 
partners, or must be chemically modified 
to become active. Alternatively, their bind-

ing sites might be unavailable for binding. 
Inferelator 3.0 looks at the expression level 
of target genes together with databases of 
transcription-factor motifs and the chromatin 
accessibility of potential binding sites in the 
genome. This means it can determine which 
transcription factors are available to stimu-
late or repress a target gene in a given cell type. 
Those activity scores are then plugged into 
one of three network-building algorithms. 

But for computational models, the more 
variables they incorporate the better they 
tend to be, Bonneau says. In many cases, that 
performance increase comes down to noise. To 

balance those competing forces, he says, the 
software gives a ‘penalty’ to each protein in the 
model — unless that protein seems to be active 
at the gene of interest. “If this transcription 
factor has a binding site near that target gene 
that is also shown to be open in the ATAC-seq 
data for that cell type, we say it doesn’t have 
to pay as large a penalty.” 

Skok Gibbs has used Inferelator 3.0 to iden-
tify regulators in brain cells called transmed-
ullary neurons in Drosophila fruit flies8. These 
neurons have several forms, and it’s possible to 
convert one to another by altering the expres-
sion of a single gene. “I was able to show that I 
could find the specific transcription factor and 
what genes it was targeting that were respon-
sible for this,” she says.

Data on genetic variation can also inform 
GRN inference. Over the past decade, network 
biologist John Quackenbush at the Harvard 
T. H. Chan School of Public Health in Boston, 
Massachusetts, and his team have created a 
virtual ‘zoo’ of algorithms with names such 
as PANDA, LIONESS and CONDOR. These 
methods exploit a machine-learning strategy 
called message passing, as well as knowledge 
of where transcription factors could bind in 
the genome, to guess and then optimize a GRN. 
The team’s most recent iteration, EGRET, uses 
information on genetic variants to tailor GRNs 
to specific individuals and cell types. It does 
so essentially by factoring in how sequence 

CellOracle software visualizes the gene regulatory networks that change a cell’s identity. In their natural state (left panel), mouse blood cells 
differentiate into red (lower left) or white cells (upper left); the right panel shows the same process when a key transcription factor is deleted. 

“You could watch all the 
transcriptional responses  
at once to understand the 
real underlying function  
of the gene.”
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variations called polymorphisms could affect 
transcription-factor binding9.

The resulting networks can reveal how var-
iants in the non-coding parts of the genome 
could lead to disease. In an analysis of 119 indi-
viduals descended from the Yoruba people of 
West Africa, Quackenbush and his colleagues 
showed that polymorphisms associated with 
coronary artery disease mainly affected GRNs 
in cardiac cells, and those associated with auto-
immune disease affected immune cells9. “We 
see our predicted disruptions in gene regula-
tion for disease-related transcription factors 
in the most relevant cell type that we looked 
at,” says study co-author Deborah Weighill.

Knockout plans
In 2016, Regev and cell biologist Jonathan 
Weissman at the Massachusetts Institute 
of Technology in Cambridge, and their col-
leagues, authored a pair of studies10,11 describ-
ing Perturb-seq, a pooled screening approach 
based on the gene-editing technique CRISPR. 
Perturb-seq allows researchers to reduce or 
knock out selected genes, using single-cell 
RNA-sequencing as a readout. Previous 
CRISPR-screening approaches tended either 
to use genetic reporters or to look at specific 
phenotypes, Weissman says. But a lot of biol-
ogy will fly under the radar of such strategies. 
“Aviv and I independently hit on this idea 
that, with RNA sequencing, you could basi-
cally watch all the transcriptional responses 
at once,” Weissman says. “That would give 
you much more information, and lead you to 
understand what the real underlying function 
of the gene was.”

In one study10, the researchers used 
Perturb-seq to analyse the effect of 24 tran-
scription factors on genes involved in the 
stimulation of bone-marrow-derived den-
dritic cells. In the other11, they targeted genes 
associated with a cell-stress pathway called 
the unfolded protein response. Since then, 
Regev has migrated the method into animals, 
and coupled it with protein quantitation in a 
method called Perturb-CITE-seq. Meanwhile, 
Weissman’s team has taken Perturb-seq 
genome-wide, knocking down nearly 10,000 
human genes in more than 2.5 million cells12. 
“So now you’ve sort of shaken the cell in every 
possible way, and you’re asking, how does it 
respond?” Weissman says. 

Alternatively, researchers can perturb 
genetic networks in silico. Kenji Kamimoto, 
a stem-cell and developmental biologist in 
Samantha Morris’s lab at the Washington 
University School of Medicine in St. Louis, 
Missouri, created CellOracle, a software tool 
that blends single-cell RNA-sequencing and 
ATAC-seq data to first infer a GRN and then 
disrupt it. By examining changes in the result-
ing maps of cell fate, researchers can visualize 
how transcription-factor disruption can alter 
a cell population. 

Kamimoto has applied CellOracle to 
systematically investigate the proteins that 
can reprogram connective-tissue cells so that 
they form other cell types, identifying factors 
that can substantially increase the efficiency of 
this transition13. At least 5 peer-reviewed stud-
ies and 13 preprints have used the tool as well, 
Morris says. In one14, biomedical engineer Tim 
Herpelinck at KU Leuven and his colleagues 
used CellOracle to model the loss of the tran-
scription factor Sox9 in bone development. 
“Knockout experiments take a huge amount of 
time, especially if you want to do them in vivo,” 
Herpelinck says. And Sox9 is particularly dif-
ficult for such analysis, he adds, because loss 
of the gene is lethal in developing embryos.

Validate, validate, validate
To properly exploit ATAC-seq data, researchers 
must know where transcription-factor binding 
sites are. Usually, says Miraldi, researchers find 
them using what is essentially a text-matching 
algorithm. But in July, she and her team 
described another option: using deep neural 
networks to find these sites in ATAC-seq data. 
According to Miraldi, researchers can use 
the algorithm, called maxATAC, to simulate 
chromatin immunoprecipitation and DNA 
sequencing in rare cells for which it isn’t prac-
tical to conduct such an experiment, includ-
ing in samples from patients. Miraldi’s team 
used maxATAC to implicate the transcription 

factors MYB and FOXP1 in a common autoim-
mune disorder called atopic dermatitis15.

The algorithm was about four times better 
than conventional transcription-factor-motif 
scanning at finding binding sites, Miraldi says. 
This should “directly translate to improve-
ments in gene-regulatory network inference 
because you’re that much more accurate in 
identifying transcription-factor binding 
sites”. But it cannot find everything: maxATAC 
includes models for only 127 out of the nearly 
1,600 identified human transcription factors. 

To help close the gap, researchers can again 
turn to deep learning. In 2021, computational 
biologist Anshul Kundaje at Stanford Univer-
sity, California, and Julia Zeitlinger at the Stow-
ers Institute for Medical Research in Kansas 
City, Missouri, described a convolutional neu-
ral network called BPNet. This uses a form of 
chromatin immunoprecipitation data called 
ChIP-nexus to learn, with single-nucleotide 
resolution, precisely which DNA sequences 
transcription factors bind to — at least in the 
cells for which the researchers have data16. 
The pair applied the approach to the four 

transcription factors used to make induced 
pluripotent stem cells — Oct4, Sox2, Klf4 and 
Nanog — and detected unexpected subtleties 
in how these proteins bind to DNA in stem cells. 
For instance, it turns out that Nanog typically 
partners with Sox2, but only if the protein’s 
binding sites are spaced 10.5 bases apart, a dis-
tance that corresponds to the periodicity of 
the DNA helix. “Even for four very well studied 
pluripotency factors, we find new modes of 
cooperativity,” Kundaje says. 

Whichever GRN method you choose, at the 
end of the day it is only a hypothesis. Like all 
bioinformatics problems, GRN inference will 
always return an answer. But to determine 
whether that answer makes sense, says Morris, 
you need to “validate, validate, validate”. 

As the methods get more complicated, 
Regev says, the challenge becomes one of 
scale: at some point, it becomes impossible 
to test every variable and combination. “There 
aren’t enough cells in the world,” she says. But, 
she notes, it might be possible to design exper-
iments efficiently enough for researchers to 
predict other experimental outcomes without 
actually testing them. 

A different way of using Perturb-seq offers 
one solution, by looking at the effect of mul-
tiple perturbations in the same cell. In their 
2016 paper10, for instance, Regev and her team 
found some cells that had received as many as 
three CRISPR-targeting RNAs per cell. Compar-
ing those to cells that had received just one or 
two targeting RNAs, they found cases in which 
the effects were synergistic, suggesting regula-
tory interactions. Such combinatorial studies, 
she says, are “the frontier – that’s where the 
field is going.” 

And once researchers are able to work out 
the cellular wiring, they can tinker with it to 
engineer cells or repair them. “Arguably,” says 
Buenrostro, “it’s the most important problem 
in biology.” 

Jeffrey M. Perkel is technology editor at 
Nature.
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“You’re that much more 
accurate in identifying 
transcription-factor  
binding sites.”
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